Optimization of epilepsy detection method based on dynamic EEG channel screening

癫痫 计算机科学 脑电图 卷积神经网络 人工智能 模式识别(心理学) 特征提取 稳健性(进化) 特征(语言学) 语音识别 心理学 神经科学 生物化学 化学 语言学 哲学 基因
作者
Yuebin Song,Chunling Fan,Xiaoqian Mao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:172: 106119-106119 被引量:24
标识
DOI:10.1016/j.neunet.2024.106119
摘要

To decrease the interference in the process of epileptic feature extraction caused by insufficient detection capability in partial channels of focal epilepsy, this paper proposes a novel epilepsy detection method based on dynamic electroencephalogram (EEG) channel screening. This method not only extracts more effective epilepsy features but also finds common features among different epilepsy subjects, providing an effective approach and theoretical support for across-subject epilepsy detection in clinical scenarios. Firstly, we use the Refine Composite Multiscale Dispersion Entropy (RCMDE) to measure the complexity of EEG signals between normal and seizure states and realize the dynamic EEG channel screening among different subjects, which can enhance the capability of feature extraction and the robustness of epilepsy detection. Subsequently, we discover common epilepsy features in 3-15Hz among different subjects by the screened EEG channels. By this finding, we construct the Residual Convolutional Long Short-Term Memory (ResCon-LSTM) neural network to accomplish across-subject epilepsy detection. The experiment results on the CHB-MIT dataset indicate that the highest accuracy of epilepsy detection in the single-subject experiment is 98.523%, improved by 5.298% compared with non-channel screening. In the across-subject experiment, the average accuracy is 96.596%. Therefore, this method could be effectively applied to different subjects by dynamically screening optimal channels and keep a good detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
正直千兰发布了新的文献求助10
2秒前
2秒前
stel7完成签到,获得积分10
3秒前
3秒前
aaa完成签到 ,获得积分10
4秒前
4秒前
4秒前
西蓝花战士完成签到 ,获得积分10
7秒前
hikari发布了新的文献求助10
10秒前
rechristal完成签到,获得积分10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
是锦锦呀发布了新的文献求助20
11秒前
rover发布了新的文献求助10
12秒前
13秒前
14秒前
JamesPei应助lululull采纳,获得10
14秒前
Lun发布了新的文献求助10
15秒前
15秒前
斯文败类应助暴躁的念之采纳,获得10
15秒前
小二完成签到,获得积分10
15秒前
镓氧锌钇铀应助TRACEY采纳,获得10
16秒前
xgg完成签到,获得积分20
16秒前
stel7发布了新的文献求助10
16秒前
yan发布了新的文献求助10
17秒前
18秒前
Martin发布了新的文献求助10
18秒前
xiayx完成签到 ,获得积分10
18秒前
大模型应助王邵梅采纳,获得10
19秒前
晏清发布了新的文献求助30
19秒前
英俊的铭应助ZhijunXiang采纳,获得10
20秒前
20秒前
午夜煎饼完成签到,获得积分10
20秒前
橙啦完成签到 ,获得积分10
21秒前
hsa_ID完成签到,获得积分20
22秒前
健壮的紫夏完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206