A novel framework combining band selection algorithm and improved 3D prototypical network for tree species classification using airborne hyperspectral images

高光谱成像 选择(遗传算法) 人工智能 模式识别(心理学) 树(集合论) 计算机科学 遥感 算法 数据挖掘 机器学习 数学 地理 组合数学
作者
Wu Jing,Long Chen,Jiaqi Wang,Yunfan Li,Erxue Chen,Xiaoli Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108813-108813 被引量:4
标识
DOI:10.1016/j.compag.2024.108813
摘要

Fine-grained identification of forest types and tree species represents a critical aspect of forest resource inventory and monitoring. The use of airborne hyperspectral remote sensing imagery stands out for its ability to finely differentiate among tree species, leveraging its exceptional spatial resolution and rich spectral details. However, this approach is limited by several challenges (e.g., high spectral correlation and information redundancy). In accordance, the adoption of a lightweight deep learning approach in the form of a few-shot learning model can effectively resolve the challenges of multi-forest tree species classification. Therefore, integrating a data dimensionality reduction algorithm with a few-shot classification model presents a promising avenue for resolving the fine-grained classification of forest tree species. In this study, we propose the innovative classification framework FAST 3D-CNN P-Net. This framework utilizes CNN for band selection, enhances the fine-grained identification process in hyperspectral data, and integrates an optimized FAST 3D-CNN into the P-Net classifier (a few-shot classifier). First, a CNN-based band selection method is employed to learn the nonlinear dependencies between spectral bands, assign weights to rank the bands, and reconstruct the global spectral information using the most informative bands. It then constructs a novel classification model, designated FAST 3D-CNN P-Net, through the integration of an optimal 3D-CNN with a prototypical network. To enhance classification performance, the FAST 3D-CNN P-Net utilizes reconstructed hyperspectral images derived from the band selection results as input. The effectiveness of the proposed framework was assessed with the airborne GFF dataset and the widely accessible medium-resolution hyperspectral datasets, Indian Pines (IP) and Kennedy Space Center (KSC). The overall classification accuracy reached 98.33 % for the GFF dataset and 97.21 % and 99.43 % for the IP and KSC, respectively, exhibiting performance superiority compared to the standalone 3D-CNN classification network. This classification framework demonstrates efficiency in selecting a subset of hyperspectral bands with minimal redundancy, empowering the rapid and accurate classification and mapping of tree species in complicated, multi-species forest stands, even with a limited quantity of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghx完成签到,获得积分10
刚刚
所所应助猪猪hero采纳,获得10
1秒前
Lucas应助一只龟龟采纳,获得10
1秒前
2秒前
Owen应助liu66采纳,获得50
2秒前
科目三应助科研小白采纳,获得10
3秒前
micomico完成签到,获得积分10
3秒前
宇文宛菡发布了新的文献求助10
4秒前
shinysparrow应助咸鱼day_by_day采纳,获得100
5秒前
wanci应助sxqz采纳,获得10
6秒前
micomico发布了新的文献求助10
7秒前
8秒前
朝文奕发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
12秒前
13秒前
小池同学发布了新的文献求助10
15秒前
咸鱼day_by_day给咸鱼day_by_day的求助进行了留言
15秒前
光撒盐完成签到,获得积分10
16秒前
共享精神应助白Guo采纳,获得10
16秒前
ZhouYW应助远山采纳,获得10
16秒前
侯MM发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
斯文败类应助nj采纳,获得10
19秒前
Akim应助cistronic采纳,获得10
20秒前
悠旷完成签到 ,获得积分10
21秒前
22秒前
碳土不凡发布了新的文献求助10
23秒前
23秒前
24秒前
wings发布了新的文献求助10
24秒前
桃酥酥完成签到,获得积分10
24秒前
柠檬发布了新的文献求助10
24秒前
Tzzl0226发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304