Domain-knowledge Inspired Pseudo Supervision (DIPS) for unsupervised image-to-image translation models to support cross-domain classification

计算机科学 人工智能 可解释性 稳健性(进化) 领域(数学分析) 机器学习 模式识别(心理学) 图像(数学) 上下文图像分类 领域知识 数据挖掘 数学分析 生物化学 化学 数学 基因
作者
Firas Al-Hindawi,Md Mahfuzur Rahman Siddiquee,Teresa Wu,Han Hu,Ying Sun
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107255-107255 被引量:7
标识
DOI:10.1016/j.engappai.2023.107255
摘要

The ability to classify images is dependent on having access to large labeled datasets and testing on data from the same domain of which the model was trained on. Classification becomes more challenging when dealing with new data from a different domain, where gathering and especially labeling a larger image dataset for retraining a classification model requires a labor-intensive human effort. Cross-domain classification frameworks were developed to handle this data domain shift problem by utilizing unsupervised image-to-image translation models to translate an input image from the unlabeled domain to the labeled domain. The problem with these unsupervised models lies in their unsupervised nature. For lack of annotations, it is not possible to use the traditional supervised metrics to evaluate these translation models to pick the best-saved checkpoint model. This paper introduces a new method called Domain-knowledge Inspired Pseudo Supervision (DIPS) which utilizes Gaussian Mixture Models and domain knowledge to generate pseudo annotations to enable the use of traditional supervised metrics. This method was designed specifically to support cross-domain classification applications contrary to other typically used metrics such as the Fréchet Inception Distance (FID) which were designed to evaluate the model in terms of the quality of the generated image from a human-eye perspective. DIPS outperforms state-of-the-art GAN evaluation metrics when selecting the optimal saved checkpoint. Furthermore, DIPS showcases its robustness and interpretability by demonstrating a strong correlation with truly supervised metrics, highlighting its superiority over existing state-of-the-art alternatives The boiling crisis problem has been approached as a case study. The code and data to replicate the results can be found on the official GitHub-repository1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fafa完成签到,获得积分10
2秒前
2秒前
Jackson完成签到 ,获得积分10
4秒前
12345发布了新的文献求助10
4秒前
ljq完成签到,获得积分10
5秒前
夏熠完成签到,获得积分10
5秒前
7秒前
罗Eason发布了新的文献求助10
8秒前
aw完成签到,获得积分10
9秒前
Jeannie完成签到,获得积分10
11秒前
13秒前
我爱陶子完成签到 ,获得积分10
13秒前
星辰大海应助一个西藏采纳,获得10
14秒前
16秒前
咩咩羊完成签到,获得积分10
16秒前
pluto应助脆脆鲨采纳,获得10
17秒前
17秒前
17秒前
加油小白菜完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
Secret_不能说的秘密完成签到,获得积分10
20秒前
21秒前
shelly发布了新的文献求助10
22秒前
科研废物完成签到 ,获得积分10
22秒前
小崔加油完成签到 ,获得积分10
26秒前
刘兆亮完成签到,获得积分10
28秒前
28秒前
科研通AI2S应助牛大锤采纳,获得10
29秒前
田様应助复杂厉采纳,获得10
29秒前
shelly完成签到,获得积分10
31秒前
31秒前
东1991完成签到,获得积分20
32秒前
我是中国人完成签到,获得积分10
33秒前
pennell01完成签到,获得积分10
33秒前
鳗鱼梦寒发布了新的文献求助10
33秒前
34秒前
英姑应助危机的语琴采纳,获得10
34秒前
adai完成签到,获得积分10
35秒前
sure完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851