Deep Efficient Continuous Manifold Learning for Time Series Modeling

计算机科学 人工智能 歧管(流体力学) 深度学习 欧几里得空间 人工神经网络 可列斯基分解 统计流形 歧管对齐 机器学习 算法 数学优化 非线性降维 信息几何学 数学 特征向量 机械工程 几何学 物理 工程类 降维 量子力学 标量曲率 曲率 纯数学
作者
Seungwoo Jeong,Wonjun Ko,Ahmad Wisnu Mulyadi,Heung‐Il Suk
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (1): 171-184 被引量:4
标识
DOI:10.1109/tpami.2023.3320125
摘要

Modeling non-euclidean data is drawing extensive attention along with the unprecedented successes of deep neural networks in diverse fields. Particularly, a symmetric positive definite matrix is being actively studied in computer vision, signal processing, and medical image analysis, due to its ability to learn beneficial statistical representations. However, owing to its rigid constraints, it remains challenging to optimization problems and inefficient computational costs, especially, when incorporating it with a deep learning framework. In this paper, we propose a framework to exploit a diffeomorphism mapping between Riemannian manifolds and a Cholesky space, by which it becomes feasible not only to efficiently solve optimization problems but also to greatly reduce computation costs. Further, for dynamic modeling of time-series data, we devise a continuous manifold learning method by systematically integrating a manifold ordinary differential equation and a gated recurrent neural network. It is worth noting that due to the nice parameterization of matrices in a Cholesky space, training our proposed network equipped with Riemannian geometric metrics is straightforward. We demonstrate through experiments over regular and irregular time-series datasets that our proposed model can be efficiently and reliably trained and outperforms existing manifold methods and state-of-the-art methods in various time-series tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨song完成签到 ,获得积分10
1秒前
小郝已读博完成签到 ,获得积分10
1秒前
布丁发布了新的文献求助10
1秒前
汉堡包应助ray采纳,获得10
2秒前
夏日的风完成签到,获得积分10
3秒前
4秒前
LQL驳回了SciGPT应助
5秒前
科研通AI5应助cfn456采纳,获得30
6秒前
7秒前
科研通AI2S应助柠檬小丸子采纳,获得10
8秒前
howgoods完成签到 ,获得积分10
8秒前
科研通AI2S应助又是一年采纳,获得10
9秒前
as发布了新的文献求助10
10秒前
邵嘉璐给邵嘉璐的求助进行了留言
11秒前
科研通AI5应助dd采纳,获得10
11秒前
Lucy完成签到 ,获得积分10
12秒前
CipherSage应助晴语采纳,获得10
12秒前
mavissss发布了新的文献求助10
13秒前
15秒前
在水一方应助Trista采纳,获得10
15秒前
16秒前
遗梦梦发布了新的文献求助10
18秒前
ray发布了新的文献求助10
19秒前
20秒前
20秒前
李爱国应助被淹死的鱼采纳,获得30
21秒前
huanhuan发布了新的文献求助10
25秒前
26秒前
甜蜜的谷梦关注了科研通微信公众号
26秒前
沧海一兰完成签到,获得积分10
26秒前
不想看文献完成签到,获得积分10
26秒前
mavissss完成签到,获得积分10
27秒前
ttong发布了新的文献求助10
27秒前
丘比特应助一二三砰采纳,获得10
28秒前
Lucy完成签到,获得积分10
29秒前
刘刘完成签到,获得积分10
29秒前
万能图书馆应助burrrrr采纳,获得10
30秒前
ray完成签到,获得积分10
32秒前
调皮翅膀完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547