Small-Sample Underwater Target Detection: A Joint Approach Utilizing Diffusion and YOLOv7 Model

水下 计算机科学 声纳 人工智能 样品(材料) 地质学 色谱法 海洋学 化学
作者
Chensheng Cheng,Xujia Hou,X. Ma,Weidong Liu,Feihu Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (19): 4772-4772 被引量:9
标识
DOI:10.3390/rs15194772
摘要

Underwater target detection technology plays a crucial role in the autonomous exploration of underwater vehicles. In recent years, significant progress has been made in the field of target detection through the application of artificial intelligence technology. Effectively applying AI techniques to underwater target detection is a highly promising area of research. However, the difficulty and high cost of underwater acoustic data collection have led to a severe lack of data, greatly restricting the development of deep-learning-based target detection methods. The present study is the first to utilize diffusion models for generating underwater acoustic data, thereby effectively addressing the issue of poor detection performance arising from the scarcity of underwater acoustic data. Firstly, we place iron cylinders and cones underwater (simulating small preset targets such as mines). Subsequently, we employ an autonomous underwater vehicle (AUV) equipped with side-scan sonar (SSS) to obtain underwater target data. The collected target data are augmented using the denoising diffusion probabilistic model (DDPM). Finally, the augmented data are used to train an improved YOLOv7 model, and its detection performance is evaluated on a test set. The results demonstrate the effectiveness of the proposed method in generating similar data and overcoming the challenge of limited training sample data. Compared to models trained solely on the original data, the model trained with augmented data shows a mean average precision (mAP) improvement of approximately 30% across various mainstream detection networks. Additionally, compared to the original model, the improved YOLOv7 model proposed in this study exhibits a 2% increase in mAP on the underwater dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Miley发布了新的文献求助10
2秒前
上官若男应助踏实威采纳,获得10
2秒前
无私的发卡完成签到,获得积分20
2秒前
打打应助朴实如冰采纳,获得10
2秒前
9℃发布了新的文献求助10
2秒前
折纸发布了新的文献求助30
3秒前
3秒前
Han发布了新的文献求助10
4秒前
DijiaXu应助万水千山采纳,获得10
4秒前
研友_VZG7GZ应助马冬梅采纳,获得10
4秒前
4秒前
快乐翎完成签到,获得积分10
5秒前
5秒前
5秒前
CucRuotThua发布了新的文献求助30
6秒前
研友_Zlx3aZ完成签到,获得积分10
6秒前
共享精神应助甄明硕采纳,获得20
7秒前
7秒前
胡小溪完成签到,获得积分10
8秒前
8秒前
赵世璧完成签到,获得积分10
8秒前
prozac发布了新的文献求助10
9秒前
Amy完成签到,获得积分10
10秒前
我只是个丙酮酸完成签到,获得积分10
10秒前
巩万苏发布了新的文献求助10
10秒前
浑映之完成签到 ,获得积分10
11秒前
qq发布了新的文献求助10
11秒前
复杂纸飞机完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
Zutilm完成签到,获得积分10
12秒前
12秒前
橙橙汁发布了新的文献求助10
13秒前
zyueeee发布了新的文献求助10
13秒前
李爱国应助研友_Zlx3aZ采纳,获得10
13秒前
cc完成签到,获得积分20
13秒前
小舟完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893