清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Forest in situ observations through a fully automated under-canopy unmanned aerial vehicle

天蓬 遥感 环境科学 原位 林业 农林复合经营 地理 气象学 考古
作者
Xinlian Liang,Haiyun Yao,Hanwen Qi,Xiaochen Wang
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:: 1-17 被引量:12
标识
DOI:10.1080/10095020.2024.2322765
摘要

Close-range sensing has yet to attain the status of being a dependable source for in situ forest information as the conventional field inventory. Each solution has its advantages and disadvantages in terms of accuracy, completeness, and efficiency. For a forest area, Terrestrial Laser Scanning (TLS) has the highest data quality, but is limited to static perspectives and lack the efficiency. Mobile Mapping Systems (MMS) systems gain on the efficiency but compromise the data quality. More recently, under-canopy UAV caught attentions for its potential to leverage the advantages of both TLS and MMS systems. This study demonstrates the feasibility of autonomous forest in situ investigation using an autonomous under-canopy UAV Laser Scanning (ULS) system, and evaluates the performance of such system in deriving key forest and tree attributes through a comparison with other close-range sensing systems such as the TLS and the Personal Laser Scanning (PLS). The under-canopy ULS system uses an onboard LiDAR sensor to aid its self-traverse in an unknown forest environment and to collect point cloud data during its movement inside the forest. Key factors influencing the systems' overall performance were investigated via various experiments. The point cloud data collected by the under canopy autonomous ULS system deliver similar stem capturing capacity as TLS in single layer forest stands with less undergrowth. The RMSEs of the DBH estimates were 0.81 cm (3.80%), 4.12cm (19.92%), and 5.13cm (22.01%), respectively. The RMSEs of the stem curve estimates were 1.27 cm (5.48%), 3.97 cm (17.63%), and 5.18 cm (22.49%), respectively. The geometric accuracy and the completeness of the point cloud significantly improved when the trajectory was densified. More studies on autonomous route planning in complex unknown forest is required to improve the system mobility, data quality, and the applicability of such systems in future practical forest in situ observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林好人完成签到 ,获得积分10
9秒前
acat完成签到 ,获得积分10
12秒前
长毛象完成签到 ,获得积分10
14秒前
寄托完成签到 ,获得积分10
18秒前
dx完成签到,获得积分10
21秒前
乒坛巨人完成签到 ,获得积分0
23秒前
yindi1991完成签到 ,获得积分10
24秒前
debu9完成签到,获得积分10
26秒前
执着夏山完成签到,获得积分10
51秒前
正直的夏真完成签到 ,获得积分10
1分钟前
送不送书7完成签到 ,获得积分10
1分钟前
as完成签到 ,获得积分10
1分钟前
田田完成签到 ,获得积分10
2分钟前
Dong完成签到 ,获得积分10
2分钟前
三个气的大门完成签到 ,获得积分10
2分钟前
是真的完成签到 ,获得积分10
2分钟前
yuntong完成签到 ,获得积分0
2分钟前
bo完成签到 ,获得积分10
2分钟前
3分钟前
向日葵完成签到,获得积分10
3分钟前
没时间解释了完成签到 ,获得积分10
3分钟前
芬芬完成签到 ,获得积分10
3分钟前
Karry完成签到 ,获得积分10
3分钟前
zbclzf完成签到,获得积分10
3分钟前
无花果应助LLL采纳,获得10
4分钟前
superyue应助科研通管家采纳,获得10
4分钟前
胡可完成签到 ,获得积分10
4分钟前
逆袭者完成签到,获得积分10
4分钟前
映寒完成签到,获得积分10
5分钟前
研梦前行完成签到,获得积分20
5分钟前
虎妞完成签到 ,获得积分10
5分钟前
科研小白完成签到 ,获得积分10
5分钟前
跳跃的鹏飞完成签到 ,获得积分10
5分钟前
5分钟前
AmyHu完成签到,获得积分10
5分钟前
施光玲44931完成签到 ,获得积分10
5分钟前
5分钟前
xz发布了新的文献求助10
5分钟前
研友_Lw7OvL完成签到 ,获得积分10
5分钟前
KongXY完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174647
求助须知:如何正确求助?哪些是违规求助? 4364091
关于积分的说明 13586157
捐赠科研通 4212854
什么是DOI,文献DOI怎么找? 2310820
邀请新用户注册赠送积分活动 1309775
关于科研通互助平台的介绍 1257538