已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigating the informative brain region in multiclass electroencephalography and near infrared spectroscopy based BCI system using band power based features

脑-机接口 脑电图 计算机科学 模式识别(心理学) 接口(物质) 人工智能 运动表象 支持向量机 语音识别 神经科学 心理学 气泡 最大气泡压力法 并行计算
作者
Ebru Ergün,Önder Aydemir,Onur Erdem Korkmaz
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:: 1-16 被引量:2
标识
DOI:10.1080/10255842.2024.2333924
摘要

In recent years, various brain imaging techniques have been used as input signals for brain-computer interface (BCI) systems. Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are two prominent techniques in this field, each with its own advantages and limitations. As a result, there is a growing tendency to integrate these methods in a hybrid within BCI systems. The primary aim of this study is to identify highly functional brain regions within an EEG + NIRS-based BCI system. To achieve this, the research focused on identifying EEG electrodes positioned in different brain lobes and then investigating the functionality of each lobe. The methodology involved segmenting the EEG + NIRS dataset into 2.4 s time windows, and then extracting band-power based features from these segmented signals. A classification algorithm, specifically the k-nearest neighbor algorithm, was then used to classify the features. The result was a remarkable classification accuracy (CA) of 95.54%±1.31 when using the active brain region within the hybrid model. These results underline the effectiveness of the proposed approach, as it outperformed both standalone EEG and NIRS modalities in terms of CA by 5.19% and 40.90%, respectively. Furthermore, the results confirm the considerable potential of the method in classifying EEG + NIRS signals recorded during tasks such as reading text while scrolling in different directions, including right, left, up and down. This research heralds a promising step towards enhancing the capabilities of BCI systems by harnessing the synergistic power of EEG and NIRS technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬柠檬完成签到 ,获得积分10
3秒前
啦啦啦发布了新的文献求助10
3秒前
5秒前
Ring完成签到 ,获得积分10
10秒前
111完成签到 ,获得积分10
11秒前
Jeff发布了新的文献求助20
12秒前
asaki完成签到,获得积分10
13秒前
111关注了科研通微信公众号
16秒前
李爱国应助Jeff采纳,获得10
17秒前
康康XY完成签到 ,获得积分10
20秒前
LRX完成签到,获得积分10
22秒前
下午好完成签到 ,获得积分10
22秒前
陈晓迪1992完成签到,获得积分10
23秒前
NEM嬛嬛驾到完成签到,获得积分10
28秒前
碳酸芙兰完成签到,获得积分10
30秒前
wlei完成签到,获得积分10
32秒前
稚气满满完成签到 ,获得积分10
37秒前
Jayzie完成签到 ,获得积分10
39秒前
41秒前
RUSeries完成签到,获得积分10
42秒前
42秒前
Yyyyy发布了新的文献求助10
46秒前
48秒前
Ayan-LusicS发布了新的文献求助10
49秒前
学霸完成签到 ,获得积分10
53秒前
brwen完成签到,获得积分10
59秒前
59秒前
Ayan-LusicS完成签到,获得积分10
1分钟前
Yyyyy完成签到,获得积分10
1分钟前
三石完成签到 ,获得积分10
1分钟前
TeaFace发布了新的文献求助10
1分钟前
YOYO完成签到,获得积分10
1分钟前
少华发布了新的文献求助200
1分钟前
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
月半完成签到,获得积分10
1分钟前
英姑应助广发牛勿采纳,获得10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
webmaster完成签到,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843164
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540401
捐赠科研通 3105997
什么是DOI,文献DOI怎么找? 1710830
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264