Self-Consistent Graph Neural Networks for Semi-Supervised Node Classification

计算机科学 图形 杠杆(统计) 人工智能 机器学习 标记数据 数据挖掘 理论计算机科学
作者
Yanbei Liu,Shichuan Zhao,Xiao Wang,Lei Geng,Zhitao Xiao,Jerry Chun‐Wei Lin
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:9 (4): 1186-1197 被引量:1
标识
DOI:10.1109/tbdata.2023.3266590
摘要

Graph Neural Networks (GNNs), the powerful graph representation technique based on deep learning, have attracted great research interest in recent years. Although many GNNs have achieved the state-of-the-art accuracy on a set of standard benchmark datasets, they are still limited to traditional semi-supervised framework and lack of sufficient supervision information, especially for the large amount of unlabeled data. To overcome this issue, we propose a novel self-consistent graph neural networks (SCGNN) framework to enrich the supervision information from two aspects: the self-consistency of unlabeled data and the label information of labeled data. First, in order to extract the self-supervision information from the numerous unlabeled nodes, we perform graph data augmentation and leverage a self-consistent constraint to maximize the mutual information of the unlabeled nodes across different augmented graph views. The self-consistency can sufficiently utilize the intrinsic structural attributes of the graph to extract the self-supervision information from unlabeled data and improve the subsequent classification result. Second, to further extract supervision information from scarce labeled nodes, we introduce a fusion mechanism to obtain comprehensive node embeddings by fusing node representations of two positive graph views, and optimize the classification loss over labeled nodes to maximize the utilization of label information. We conduct comprehensive empirical studies on six public benchmark datasets in node classification task. In terms of accuracy, SCGNN improves by an average of 2.08% over the best baseline, and specifically by 5.8% on the Disease dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yr发布了新的文献求助10
刚刚
小二郎应助布洛芬采纳,获得10
2秒前
sherry发布了新的文献求助10
2秒前
大曼发布了新的文献求助10
2秒前
SYLH应助烟火采纳,获得10
3秒前
3秒前
3秒前
活泼的番茄完成签到,获得积分10
4秒前
某某完成签到,获得积分10
4秒前
pjmwj完成签到,获得积分10
4秒前
5秒前
wwx发布了新的文献求助10
5秒前
冷静水池发布了新的文献求助10
6秒前
CCCCPUTA完成签到,获得积分10
6秒前
Alex应助hh采纳,获得10
6秒前
8秒前
qwer发布了新的文献求助10
8秒前
9秒前
9秒前
李健应助1111采纳,获得10
10秒前
10秒前
权翼完成签到,获得积分10
10秒前
LVMIN发布了新的文献求助10
11秒前
illusion2019应助王雪采纳,获得10
12秒前
HYH完成签到 ,获得积分10
12秒前
嘟嘟完成签到,获得积分10
12秒前
12秒前
12秒前
zhengpaipian完成签到,获得积分10
12秒前
Lyanph完成签到 ,获得积分10
12秒前
XX完成签到,获得积分10
13秒前
迷路的芝麻完成签到,获得积分10
13秒前
14秒前
霍三石发布了新的文献求助10
14秒前
14秒前
赘婿应助CarryZ8采纳,获得10
15秒前
DrZ发布了新的文献求助10
15秒前
Owen应助fklajlie采纳,获得30
15秒前
田様应助carly采纳,获得10
15秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300