A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach

海底 点蚀 管道运输 石油工程 腐蚀 环境科学 地质学 海洋工程 材料科学 冶金 工程类 环境工程
作者
Xinhong Li,Mengmeng Guo,Renren Zhang,Guoming Chen
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:261: 112062-112062 被引量:42
标识
DOI:10.1016/j.oceaneng.2022.112062
摘要

Pitting corrosion is considered to be one of the most dangerous failure forms of offshore steel structures, and corrosion depth is treated as an important indicator of corrosion condition. This paper presents a data-driven model to predict maximum pitting corrosion depth of subsea oil pipelines using the integrated SSA and LSTM approach. LSTM is utilized to learn the relationship between pipeline corrosion depth and its influencing factors. SSA with the strong global search ability and the fast convergence speed is used to optimize hyperparameters of LSTM model to improve its prediction accuracy. A total of 300 samples of maximum pitting corrosion depth of subsea oil pipelines are used to develop the data-driven model. These data are divided into training set and testing set to train and verify the model, respectively. The developed model is compared with LSTM alone and SSA-BP model. The results indicate that SSA-LSTM model performed superior in the prediction accuracy and robustness which evaluation parameters are the smallest values in these models (MAE = 8.84%; RMSE = 0.0607; MSE = 0.36%; MAPE = 9.58%). The developed model can serve as a useful online tool to support the digitalized safety of subsea process systems. • A data-driven model for predicting maximum pitting corrosion depth of marine facilities. • Two methods including SSA and LSTM are integrated. • The model is applied to predict maximum pitting corrosion depth of subsea oil pipelines. • The proposed model can support digitization of marine facilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助鳗鱼采纳,获得10
1秒前
Hello应助rxn824采纳,获得10
1秒前
1秒前
kkxx应助meng采纳,获得20
2秒前
伊一完成签到 ,获得积分10
2秒前
科研小白发布了新的文献求助10
3秒前
3秒前
21发布了新的文献求助10
3秒前
吴梦瑜发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
zhangsfdfgldf发布了新的文献求助10
4秒前
虚线完成签到,获得积分10
4秒前
4秒前
4秒前
香蕉觅云应助诚心晓露采纳,获得10
5秒前
xyz发布了新的文献求助10
5秒前
kk发布了新的文献求助10
5秒前
6秒前
AlwaysKim发布了新的文献求助10
6秒前
木木完成签到,获得积分10
6秒前
6秒前
慕青应助包子采纳,获得10
6秒前
一啊呀发布了新的文献求助10
7秒前
7秒前
zxy发布了新的文献求助10
7秒前
insane发布了新的文献求助10
7秒前
wzx发布了新的文献求助10
8秒前
piglet完成签到 ,获得积分10
8秒前
Sun发布了新的文献求助10
8秒前
小米应助li采纳,获得10
8秒前
丙队长完成签到,获得积分10
8秒前
七月流火应助为万世开太平采纳,获得450
9秒前
安静的筝完成签到,获得积分10
9秒前
QRE发布了新的文献求助20
9秒前
神勇幻枫发布了新的文献求助10
10秒前
11秒前
木木发布了新的文献求助10
11秒前
所所应助逛超市刚好打折采纳,获得10
11秒前
fengxiu完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4283556
求助须知:如何正确求助?哪些是违规求助? 3811433
关于积分的说明 11939026
捐赠科研通 3457861
什么是DOI,文献DOI怎么找? 1896376
邀请新用户注册赠送积分活动 945186
科研通“疑难数据库(出版商)”最低求助积分说明 848901