Multimodal radiopathomics signature for prediction of response to immunotherapy-based combination therapy in gastric cancer using interpretable machine learning

免疫疗法 癌症 接收机工作特性 医学 队列 比例危险模型 肿瘤科 内科学
作者
Weicai Huang,Xiaoyan Wang,Rou Zhong,Zhe Li,Kangneng Zhou,Qing Lyu,Jinmin Han,Tao Chen,Md Tauhidul Islam,Qingyu Yuan,M. Usman Ahmad,Sitong Chen,Chuanli Chen,Jiongqiang Huang,Jingjing Xie,Yunhao Shen,Wenjun Xiong,Lin Shen,Yikai Xu,Fan Yang
出处
期刊:Cancer Letters [Elsevier BV]
卷期号:631: 217930-217930
标识
DOI:10.1016/j.canlet.2025.217930
摘要

Immunotherapy has become a cornerstone in the treatment of advanced gastric cancer (GC). However, identifying reliable predictive biomarkers remains a considerable challenge. This study demonstrates the potential of integrating multimodal baseline data, including computed tomography scan images and digital H&E-stained pathology images, with biological interpretation to predict the response to immunotherapy-based combination therapy using a multicenter cohort of 298 GC patients. By employing seven machine learning approaches, we developed a radiopathomics signature (RPS) to predict treatment response and stratify prognostic risk in GC. The RPS demonstrated area under the receiver-operating-characteristic curves (AUCs) of 0.978 (95 % CI, 0.950-1.000), 0.863 (95 % CI, 0.744-0.982), and 0.822 (95 % CI, 0.668-0.975) in the training, internal validation, and external validation cohorts, respectively, outperforming conventional biomarkers such as CPS, MSI-H, EBV, and HER-2. Kaplan-Meier analysis revealed significant differences of survival between high- and low-risk groups, especially in advanced-stage and non-surgical patients. Additionally, genetic analyses revealed that the RPS correlates with enhanced immune regulation pathways and increased infiltration of memory B cells. The interpretable RPS provides accurate predictions for treatment response and prognosis in GC and holds potential for guiding more precise, patient-specific treatment strategies while offering insights into immune-related mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奇异物质发布了新的文献求助10
1秒前
1秒前
wxy完成签到,获得积分10
1秒前
失眠的访枫关注了科研通微信公众号
2秒前
3秒前
kelly发布了新的文献求助10
3秒前
binghe411发布了新的文献求助10
3秒前
oak完成签到,获得积分10
5秒前
5秒前
5秒前
哇samm完成签到,获得积分10
6秒前
6秒前
盐岩妍完成签到 ,获得积分10
6秒前
复杂万仇完成签到 ,获得积分10
7秒前
自豪的樱桃完成签到,获得积分10
7秒前
8秒前
松原花音完成签到,获得积分10
8秒前
8秒前
我是老大应助FFFFFFFFF采纳,获得10
8秒前
邢寻冬发布了新的文献求助200
9秒前
单半青完成签到,获得积分10
9秒前
sss发布了新的文献求助10
10秒前
11秒前
专玩对抗路完成签到,获得积分10
11秒前
wellbeing完成签到,获得积分10
11秒前
浮游应助毛豆爸爸采纳,获得10
11秒前
dou发布了新的文献求助10
11秒前
茉莉公主发布了新的文献求助10
12秒前
猪猪完成签到,获得积分10
12秒前
xiuxiu发布了新的文献求助10
12秒前
12秒前
小胡胡完成签到,获得积分10
12秒前
12秒前
13秒前
李健应助CYS采纳,获得10
14秒前
14秒前
浮游应助瑶果子采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
szr发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070402
求助须知:如何正确求助?哪些是违规求助? 4291513
关于积分的说明 13370731
捐赠科研通 4111809
什么是DOI,文献DOI怎么找? 2251710
邀请新用户注册赠送积分活动 1256801
关于科研通互助平台的介绍 1189454