Multimodal radiopathomics signature for prediction of response to immunotherapy-based combination therapy in gastric cancer using interpretable machine learning

免疫疗法 癌症 接收机工作特性 医学 队列 比例危险模型 肿瘤科 内科学
作者
Weicai Huang,Xiaoyan Wang,Rou Zhong,Zhe Li,Kangneng Zhou,Qing Lyu,Jinmin Han,Tao Chen,Md Tauhidul Islam,Qingyu Yuan,M. Usman Ahmad,Sitong Chen,Chuanli Chen,Jiongqiang Huang,Jingjing Xie,Yunhao Shen,Wenjun Xiong,Lin Shen,Yikai Xu,Fan Yang
出处
期刊:Cancer Letters [Elsevier]
卷期号:631: 217930-217930 被引量:2
标识
DOI:10.1016/j.canlet.2025.217930
摘要

Immunotherapy has become a cornerstone in the treatment of advanced gastric cancer (GC). However, identifying reliable predictive biomarkers remains a considerable challenge. This study demonstrates the potential of integrating multimodal baseline data, including computed tomography scan images and digital H&E-stained pathology images, with biological interpretation to predict the response to immunotherapy-based combination therapy using a multicenter cohort of 298 GC patients. By employing seven machine learning approaches, we developed a radiopathomics signature (RPS) to predict treatment response and stratify prognostic risk in GC. The RPS demonstrated area under the receiver-operating-characteristic curves (AUCs) of 0.978 (95 % CI, 0.950-1.000), 0.863 (95 % CI, 0.744-0.982), and 0.822 (95 % CI, 0.668-0.975) in the training, internal validation, and external validation cohorts, respectively, outperforming conventional biomarkers such as CPS, MSI-H, EBV, and HER-2. Kaplan-Meier analysis revealed significant differences of survival between high- and low-risk groups, especially in advanced-stage and non-surgical patients. Additionally, genetic analyses revealed that the RPS correlates with enhanced immune regulation pathways and increased infiltration of memory B cells. The interpretable RPS provides accurate predictions for treatment response and prognosis in GC and holds potential for guiding more precise, patient-specific treatment strategies while offering insights into immune-related mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Tloml-dw010530采纳,获得10
1秒前
儒雅路人完成签到,获得积分10
1秒前
1秒前
糊涂的康完成签到,获得积分10
1秒前
彭于晏应助Fighter采纳,获得10
2秒前
2秒前
grant发布了新的文献求助10
2秒前
4秒前
5秒前
蛇蛇王子完成签到 ,获得积分10
6秒前
冰柠檬发布了新的文献求助10
7秒前
8秒前
michael发布了新的文献求助10
9秒前
小蘑菇应助韭黄采纳,获得10
10秒前
何大青完成签到,获得积分10
10秒前
11秒前
王津丹发布了新的文献求助10
12秒前
lily完成签到,获得积分10
12秒前
张顾伟完成签到,获得积分10
12秒前
orixero应助居居采纳,获得10
13秒前
Fighter发布了新的文献求助10
13秒前
刻苦惜霜完成签到,获得积分10
14秒前
HYJ发布了新的文献求助10
14秒前
15秒前
Cunese完成签到,获得积分10
15秒前
一只盒子完成签到,获得积分10
16秒前
CodeCraft应助斯文的海安采纳,获得10
18秒前
今后应助怎么说采纳,获得30
18秒前
奋斗的蓝蜗牛完成签到,获得积分10
19秒前
19秒前
义气天真完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
Fighter完成签到,获得积分20
21秒前
汉堡包应助冰柠檬采纳,获得10
22秒前
无花果应助文光采纳,获得10
22秒前
满意幻莲完成签到,获得积分10
22秒前
shhoing应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540209
求助须知:如何正确求助?哪些是违规求助? 4626761
关于积分的说明 14600864
捐赠科研通 4567797
什么是DOI,文献DOI怎么找? 2504227
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453541