Identification immune-related hub genes in diagnosing atherosclerosis with ischemic stroke through comprehensive bioinformatics analysis and machine learning

鉴定(生物学) 缺血性中风 冲程(发动机) 医学 生物信息学 免疫系统 计算生物学 机器学习 计算机科学 内科学 生物 缺血 免疫学 工程类 机械工程 植物
作者
Ming Zhang,Lijun Tang,Shi-Yu Long
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fneur.2025.1507855
摘要

Atheroma plaques are major etiological factors in the pathogenesis of ischemic stroke (IS). Emerging evidence highlights the critical involvement of the immune microenvironment and dysregulated inflammatory responses throughout IS progression. Consequently, therapeutic strategies targeting specific immune-related markers or signaling pathways within this microenvironment hold significant promise for IS management. We integrated Weighted Gene Co-expression Network Analysis (WGCNA), CIBERSORT, and machine learning (LASSO/Random Forest) to identify disease-associated modules and hub genes. Immune infiltration analysis evaluated hub gene-immune cell correlations, while protein-protein interaction (PPI) and ROC curve analyses assessed diagnostic performance. Comprehensive bioinformatics analysis identified three hub genes-OAS2, TMEM106A, and ABCB1-with high prognostic value for ischemic stroke. Immune infiltration profiling revealed significant correlations between these genes and distinct immune cell populations, underscoring their roles in modulating the immune microenvironment. The diagnostic performance of the gene panel was robust, achieving an area under the curve (AUC) was calculated as 0.9404 (p < 0.0001; 95% CI: 0.887-0.9939) for atherosclerotic plaques, demonstrating superior accuracy compared to conventional biomarkers. By integrating machine learning with multi-omics bioinformatics, we established a novel three-gene signature (OAS2, TMEM106A, ABCB1) for precise diagnosis of atherosclerosis and ischemic stroke. These genes exhibit dual diagnostic utility and may influence disease progression through immune cell modulation. Our findings provide a foundation for developing targeted therapies and biomarker-driven clinical tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寂寞的白筠完成签到,获得积分10
1秒前
龙共完成签到,获得积分10
1秒前
学好久完成签到 ,获得积分10
1秒前
晒黑的雪碧完成签到,获得积分10
2秒前
求学深深完成签到,获得积分20
2秒前
南溪完成签到,获得积分10
2秒前
qing1245完成签到,获得积分10
3秒前
可以的完成签到,获得积分10
4秒前
4秒前
任我行完成签到,获得积分10
4秒前
xys完成签到,获得积分20
4秒前
科研通AI5应助RR采纳,获得10
4秒前
端庄的火龙果完成签到,获得积分10
5秒前
单纯的邑发布了新的文献求助10
5秒前
小李老博应助yanziwu94采纳,获得10
5秒前
佳无夜完成签到,获得积分10
6秒前
6秒前
可耐的紫夏完成签到,获得积分10
7秒前
萱萱完成签到,获得积分10
7秒前
7秒前
脑洞疼应助义气的慕卉采纳,获得10
7秒前
CXC完成签到,获得积分10
7秒前
8秒前
灵魂在寻找躯壳完成签到,获得积分10
9秒前
Cu_wx完成签到,获得积分10
9秒前
当时只道是寻常完成签到,获得积分10
9秒前
风信子完成签到,获得积分10
9秒前
Pothos应助贪玩访琴采纳,获得30
9秒前
9秒前
任性的皮卡丘完成签到 ,获得积分10
10秒前
萱萱发布了新的文献求助10
10秒前
melon完成签到,获得积分10
10秒前
10秒前
Singularity发布了新的文献求助10
11秒前
汪江涛完成签到,获得积分10
11秒前
夏硕士发布了新的文献求助20
11秒前
Shirley完成签到,获得积分10
12秒前
呆鹅喵喵完成签到,获得积分10
12秒前
hhcosy发布了新的文献求助10
12秒前
沙克几十块完成签到,获得积分10
13秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830672
求助须知:如何正确求助?哪些是违规求助? 3372994
关于积分的说明 10476648
捐赠科研通 3093056
什么是DOI,文献DOI怎么找? 1702310
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153