Phonon and electron transport engineering for enhanced thermoelectric performance and the challenges of device integration

热电材料 热电效应 纳米技术 工程物理 发电 热电发电机 数码产品 材料科学 转化式学习 系统工程 功率(物理) 工程类 电气工程 物理 教育学 热力学 量子力学 心理学
作者
Marisol Martín‐González,Ketan Lohani,Neophytos Neophytou
出处
期刊:Energy materials [OAE Publishing Inc.]
卷期号:5 (9) 被引量:3
标识
DOI:10.20517/energymater.2025.32
摘要

Thermoelectricity has long been recognized as a transformative technology for power generation and cooling, owing to its capability to convert heat directly into electricity and vice versa, thereby facilitating cost-effective and environmentally friendly energy conversion. Following a period of modest activity, the field has experienced a remarkable resurgence since 2000, driven by significant advancements in the development of a diverse array of new materials and compounds, alongside enhanced capabilities for controlled nanostructuring. This rapid growth and the innovative breakthroughs observed over the past two decades can be largely attributed to a deeper understanding of the physical properties at the nanoscale. Among the various thermoelectric materials, nanostructured variants exhibit the highest potential for commercial application due to their unprecedented thermoelectric performance, which arises from substantial reductions in thermal conductivity. However, further advancements will not rely solely on nanostructuring; they will also necessitate novel electronic structure design concepts that require a comprehensive understanding of the complexities of electronic and phonon transport. These developments present significant opportunities for thermoelectric energy harvesting, power generation, and cooling applications. This article aims to summarize and elucidate the breakthroughs reported in recent years, discuss future avenues that integrate nanostructuring concepts with the rich electronic structures of novel materials, and provide a critical overview of the future directions in thermoelectric materials research. Additionally, it offers a comprehensive overview of state-of-the-art thermoelectric materials and devices and a summary of the challenges associated with transitioning these materials into practical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alanbike完成签到,获得积分10
1秒前
vetzlk完成签到 ,获得积分10
1秒前
可耐的冰巧完成签到,获得积分10
1秒前
阿楚发布了新的文献求助10
1秒前
1秒前
周周周完成签到 ,获得积分10
2秒前
z!完成签到 ,获得积分10
2秒前
3秒前
4秒前
烟花应助3dyf采纳,获得10
5秒前
5秒前
枯涸的脑海完成签到,获得积分10
5秒前
自强不息发布了新的文献求助10
5秒前
nc发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
locket完成签到 ,获得积分10
6秒前
退后分裂搁浅完成签到,获得积分10
7秒前
wildeager完成签到,获得积分10
8秒前
七栀发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
xiaoxiaoluo发布了新的文献求助10
11秒前
orixero应助ivying0209采纳,获得10
11秒前
12秒前
12秒前
XSB完成签到,获得积分10
12秒前
13秒前
Zozo完成签到,获得积分10
14秒前
自强不息完成签到,获得积分10
14秒前
ls完成签到,获得积分10
16秒前
16秒前
洁净的千凡完成签到 ,获得积分20
16秒前
16秒前
MetaMysteria发布了新的文献求助10
17秒前
Hello应助东邪妖君采纳,获得10
17秒前
sunpeipei发布了新的文献求助10
18秒前
swslgd完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636181
求助须知:如何正确求助?哪些是违规求助? 4739881
关于积分的说明 14993686
捐赠科研通 4794175
什么是DOI,文献DOI怎么找? 2561125
邀请新用户注册赠送积分活动 1520765
关于科研通互助平台的介绍 1481060