Thermochemical method for controlling pore structure to enhance hydrogen storage capacity of biochar

生物炭 氢气储存 微型多孔材料 吸附 化学工程 比表面积 碳纤维 介孔材料 热解 多孔性 朗缪尔 化学 材料科学 巴(单位) 有机化学 复合材料 复合数 催化作用 物理 气象学 工程类
作者
Lihua Deng,Yijun Zhao,Shaozeng Sun,Dongdong Feng,Wenda Zhang
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:48 (57): 21799-21813 被引量:6
标识
DOI:10.1016/j.ijhydene.2023.03.084
摘要

Developing new carbon-based hydrogen storage materials can significantly promote solid-state hydrogen storage technology. Biochar with high hydrogen storage capacity can be prepared by KOH melt activation, which has a high proportion of micropores (96.56%) compared with the porous carbon in the existing literature. Its specific surface area and pore volume are 2801.88 m2/g and 1.44 cm3/g, respectively. The size of the nanopores is affected by the activation ratio, but the temperature has little effect at the low activation ratio. SEM results show that the KOH activation process gradually shifts from the biochar's inside to the outside. A low KOH/char ratio (less than 2:1) can promote the formation of small aromatic rings. Due to its high specific surface area and microporosity, the absolute adsorption capacity of hydrogen in biochar is 2.53 wt% at −196 °C and 1 bar, rising to 5.32 wt% at 50 bar. The hydrogen adsorption process conforms to the Langmuir model. Microporous, mesoporous, and macroporous exhibit different hydrogen adsorption characteristics in various pressure ranges. However, ultramicroporous (<0.7 nm) always plays a decisive role in the hydrogen storage of biochar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
langwang发布了新的文献求助10
刚刚
乐总完成签到,获得积分10
刚刚
Kevin完成签到,获得积分10
1秒前
Singularity应助sadascaqwqw采纳,获得10
1秒前
1秒前
云云完成签到,获得积分10
1秒前
邪恶青年完成签到,获得积分10
1秒前
Rylee完成签到,获得积分10
1秒前
hkh发布了新的文献求助10
2秒前
2秒前
ccc发布了新的文献求助10
2秒前
helloworld发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
3秒前
许九安发布了新的文献求助10
4秒前
lalala完成签到,获得积分10
4秒前
张明完成签到 ,获得积分10
4秒前
felix完成签到,获得积分10
4秒前
共享精神应助amupf采纳,获得10
4秒前
4秒前
ttly发布了新的文献求助10
5秒前
cij123完成签到,获得积分10
5秒前
王晓完成签到,获得积分10
5秒前
6秒前
6秒前
cc完成签到,获得积分10
6秒前
whywhy发布了新的文献求助10
7秒前
qaz发布了新的文献求助10
7秒前
hikari发布了新的文献求助10
7秒前
hujun完成签到 ,获得积分10
7秒前
7秒前
qwq完成签到,获得积分10
8秒前
gm发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
HJJHJH发布了新的文献求助10
8秒前
A晨完成签到,获得积分10
8秒前
森林木发布了新的文献求助10
9秒前
李白完成签到,获得积分10
9秒前
SciGPT应助爱吃蔬菜采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4743428
求助须知:如何正确求助?哪些是违规求助? 4092679
关于积分的说明 12660281
捐赠科研通 3803864
什么是DOI,文献DOI怎么找? 2100058
邀请新用户注册赠送积分活动 1125373
关于科研通互助平台的介绍 1001805