Abstract Fine‐tuning electronic structures of single‐atom catalysts (SACs) plays a crucial role in harnessing their catalytic activities, yet challenges remain at a molecular scale in a controlled fashion. By tailoring the structure of graphdiyne (GDY) with electron‐withdrawing/‐donating groups, we show herein the electronic perturbation of Cu single‐atom CO 2 reduction catalysts in a molecular way. The elaborately introduced functional groups (−F, −H and −OMe) can regulate the valance state of Cu δ+ , which is found to be directly scaled with the selectivity of the electrochemical CO 2 ‐to‐CH 4 conversion. An optimum CH 4 Faradaic efficiency of 72.3 % was achieved over the Cu SAC on the F‐substituted GDY. In situ spectroscopic studies and theoretical calculations revealed that the positive Cu δ+ centers adjusted by the electron‐withdrawing group decrease the p K a of adsorbed H 2 O, promoting the hydrogenation of intermediates toward the CH 4 production. Our strategy paves the way for precise electronic perturbation of SACs toward efficient electrocatalysis.