Recognizing Edge-Based Diseases of Vocal Cords by Using Convolutional Neural Networks

人工智能 计算机科学 F1得分 模式识别(心理学) 卷积神经网络 深度学习 试验装置 训练集 人工神经网络 推论
作者
Chen-Kun Tsung,Yung-An Tso
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 120383-120397 被引量:8
标识
DOI:10.1109/access.2022.3221457
摘要

During clinical consultations and case training, doctors analyze numerous images and sounds. A high-pressure consultation environment can increase the probability of a doctor making incorrect inferences regarding vocal cord (VC) disease. Therefore, this study applied deep learning to design an edge-based VC disease detection system (EVC-DD) for common VC conditions (e.g., nodules, polyps, and cancer) to assist doctors in conducting consultations and case studies and in verifying the consistency of their disease inferences. Through deep learning, the model extracted and recorded clinically confirmed information in its disease inference model. The experiment data set comprised videos of nodules, polyps, and cancer that were used to evaluate the performance of the proposed model. From 13 cases confirmed by two doctors, 1740 images were extracted from 13 case videos and used in the experiment. In total, 1044 (60%), 348 (20%), and 348 (20%) images were randomly obtained through five-fold cross-validation for training, validation, and testing, respectively. During the model training process, the EVC-DD model achieved 100% accuracy in detecting the three conditions required for optimal experiment results. For the results in the analysis of the independent test data with optimized configuration. the EVC-DD model achieved 99.42%, 99.42%, 99.42%, 99.42%, 98.91%, and 0.9957 for averaged F1 score, averaged recall rate, averaged precision, accuracy, Matthews correlation coefficient, and area under the curve, respectively. The EVC-DD model required only 400 s to complete its training using 1740 images. The results indicate that the inferences of the EVC-DD model were highly consistent with the results of the clinical examination by doctors and that its training was data- and time-efficient, thereby allowing the model to learn new cases quickly. Thus, the EVC-DD model can assist doctors in consultations and case analyses by providing reliable disease inferences and real-time input regarding new case knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稚生w发布了新的文献求助10
刚刚
Unfair完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
kenan发布了新的文献求助10
2秒前
Poyd发布了新的文献求助10
2秒前
钱淑冉发布了新的文献求助10
3秒前
3秒前
3秒前
654-2完成签到,获得积分10
3秒前
张子完成签到,获得积分10
3秒前
3秒前
Huang发布了新的文献求助10
4秒前
英姑应助哈哈采纳,获得10
4秒前
哈哈发布了新的文献求助10
4秒前
列苑苑发布了新的文献求助10
5秒前
可爱的函函应助júpiter采纳,获得10
5秒前
李健应助土豆··采纳,获得10
5秒前
析界成微发布了新的文献求助10
5秒前
5秒前
5秒前
ZD完成签到,获得积分20
5秒前
小蘑菇应助取名真烦采纳,获得10
6秒前
乐乐应助ziyue采纳,获得10
6秒前
可爱多发布了新的文献求助10
7秒前
开朗千山发布了新的文献求助10
7秒前
小吕完成签到,获得积分10
7秒前
清澈的星星关注了科研通微信公众号
7秒前
8秒前
8秒前
Poyd完成签到,获得积分20
9秒前
9秒前
平淡冬亦发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Akim应助Pureasy采纳,获得10
11秒前
小马甲应助马关维采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844