Early Indicators of the Impact of Using AI in Mammography Screening for Breast Cancer

医学 乳腺摄影术 工作量 回顾性队列研究 乳腺X光筛查 乳房成像 乳腺癌 癌症 内科学 计算机科学 操作系统
作者
Andreas D. Lauritzen,Martin Lillholm,Elsebeth Lynge,Mads Nielsen,Nico Karssemeijer,Ilse Vejborg
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (3) 被引量:4
标识
DOI:10.1148/radiol.232479
摘要

Background Retrospective studies have suggested that using artificial intelligence (AI) may decrease the workload of radiologists while preserving mammography screening performance. Purpose To compare workload and screening performance for two cohorts of women who underwent screening before and after AI system implementation. Materials and Methods This retrospective study included 50–69-year-old women who underwent biennial mammography screening in the Capital Region of Denmark. Before AI system implementation (October 1, 2020, to November 17, 2021), all screenings involved double reading. For screenings conducted after AI system implementation (November 18, 2021, to October 17, 2022), likely normal screenings (AI examination score ≤5 before May 3, 2022, or ≤7 on or after May 3, 2022) were single read by one of 19 senior full-time breast radiologists. The remaining screenings were read by two radiologists with AI-assisted decision support. Biopsy and surgical outcomes were retrieved between October 1, 2020, and April 15, 2023, ensuring at least 180 days of follow-up. Screening metrics were compared using the χ2 test. Reading workload reduction was measured as saved screening reads. Results In total, 60 751 and 58 246 women were screened before and after AI system implementation, respectively (median age, 58 years [IQR, 54–64 years] for both cohorts), with a median screening interval before AI of 845 days (IQR, 820–878 days) and with AI of 993 days (IQR, 968–1013 days; P < .001). After AI system implementation, the recall rate decreased by 20.5% (3.09% before AI [1875 of 60 751] vs 2.46% with AI [1430 of 58 246]; P < .001), the cancer detection rate increased (0.70% [423 of 60 751] vs 0.82% [480 of 58 246]; P = .01), the false-positive rate decreased (2.39% [1452 of 60 751] vs 1.63% [950 of 58 246]; P < .001), the positive predictive value increased (22.6% [423 of 1875] vs 33.6% [480 of 1430]; P < .001), the rate of small cancers (≤1 cm) increased (36.6% [127 of 347] vs 44.9% [164 of 365]; P = .02), the rate of node-negative cancers was unchanged (76.7% [253 of 330] vs 77.8% [273 of 351]; P = .73), and the rate of invasive cancers decreased (84.9% [359 of 423] vs 79.6% [382 of 480]; P = .04). The reading workload was reduced by 33.5% (38 977 of 116 492 reads). Conclusion In a population-based mammography screening program, using AI reduced the overall workload of breast radiologists while improving screening performance. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Lee and Friedewald in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lpyee发布了新的文献求助10
1秒前
2秒前
2秒前
leclare发布了新的文献求助10
4秒前
lin发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
7秒前
DDD完成签到,获得积分20
7秒前
小伍同学发布了新的文献求助10
8秒前
9秒前
9秒前
酷波er应助粗心的胜采纳,获得10
9秒前
Jasper应助羊二呆采纳,获得10
9秒前
在水一方应助科研顺路采纳,获得10
9秒前
隐形便当完成签到 ,获得积分10
9秒前
lwg完成签到,获得积分20
10秒前
司空晓山发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
情怀应助hcmsaobang2001采纳,获得10
11秒前
12秒前
12秒前
传奇3应助烂漫的飞松采纳,获得10
13秒前
chen完成签到,获得积分20
13秒前
14秒前
Ly完成签到,获得积分10
14秒前
15秒前
亮liang发布了新的文献求助10
15秒前
lwg发布了新的文献求助30
15秒前
wang发布了新的文献求助10
16秒前
斯文败类应助杰杰大叔采纳,获得10
17秒前
limy完成签到,获得积分20
17秒前
18秒前
开放芝麻完成签到 ,获得积分10
18秒前
科研通AI2S应助zm采纳,获得10
18秒前
shareef发布了新的文献求助10
18秒前
19秒前
小伍同学发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5060755
求助须知:如何正确求助?哪些是违规求助? 4284871
关于积分的说明 13352964
捐赠科研通 4102768
什么是DOI,文献DOI怎么找? 2246291
邀请新用户注册赠送积分活动 1251986
关于科研通互助平台的介绍 1182726