Hypercomplex Graph Neural Network: Towards Deep Intersection of Multi-modal Brain Networks

计算机科学 交叉口(航空) 情态动词 人工神经网络 人工智能 图形 超复数 图论 模式识别(心理学) 理论计算机科学 数学 组合数学 化学 几何学 高分子化学 工程类 四元数 航空航天工程
作者
Yanwu Yang,Chenfei Ye,Guoqing Cai,Kunru Song,Jintao Zhang,Yang Xiang,Ting Ma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/jbhi.2024.3490664
摘要

The multi-modal neuroimage study has provided insights into understanding the heteromodal relationships between brain network organization and behavioral phenotypes. Integrating data from various modalities facilitates the characterization of the interplay among anatomical, functional, and physiological brain alterations or developments. Graph Neural Networks (GNNs) have recently become popular in analyzing and fusing multi-modal, graph-structured brain networks. However, effectively learning complementary representations from other modalities remains a significant challenge due to the sophisticated and heterogeneous inter-modal dependencies. Furthermore, most existing studies often focus on specific modalities (e.g., only fMRI and DTI), which limits their scalability to other types of brain networks. To overcome these limitations, we propose a HyperComplex Graph Neural Network (HC-GNN) that models multi-modal networks as hypercomplex tensor graphs. In our approach, HC-GNN is conceptualized as a dynamic spatial graph, where the attentively learned inter-modal associations are represented as the adjacency matrix. HC-GNN leverages hypercomplex operations for inter-modal intersections through cross-embedding and cross-aggregation, enriching the deep coupling of multi-modal representations. We conduct a statistical analysis on the saliency maps to associate disease biomarkers. Extensive experiments on three datasets demonstrate the superior classification performance of our method and its strong scalability to various types of modalities. Our work presents a powerful paradigm for the study of multi-modal brain networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
故酒应助斯文的傲珊采纳,获得10
1秒前
CodeCraft应助醉熏的丹秋采纳,获得10
1秒前
沫荔完成签到 ,获得积分10
3秒前
3秒前
修辞完成签到 ,获得积分10
3秒前
3秒前
tt发布了新的文献求助10
4秒前
5秒前
我是大兴完成签到,获得积分10
6秒前
天天开心完成签到 ,获得积分10
7秒前
RussHu完成签到,获得积分10
7秒前
千千完成签到,获得积分10
7秒前
7秒前
Serein发布了新的文献求助10
8秒前
万能图书馆应助个性湘采纳,获得50
9秒前
yud完成签到 ,获得积分10
10秒前
可口可乐发布了新的文献求助10
10秒前
12秒前
虹虹完成签到 ,获得积分10
13秒前
夏夜完成签到 ,获得积分10
13秒前
坚定的小蘑菇完成签到 ,获得积分10
14秒前
zzz完成签到,获得积分10
15秒前
GTRK完成签到,获得积分10
15秒前
16秒前
千陽完成签到 ,获得积分10
17秒前
zhiwei完成签到 ,获得积分10
17秒前
Orchid发布了新的文献求助10
18秒前
19秒前
天璇完成签到,获得积分10
19秒前
满天星辰独览完成签到 ,获得积分10
19秒前
洋葱完成签到,获得积分10
20秒前
20秒前
Wtony完成签到 ,获得积分10
22秒前
22秒前
个性湘发布了新的文献求助50
25秒前
追风发布了新的文献求助10
25秒前
英俊的铭应助可口可乐采纳,获得10
26秒前
跳不起来的大神完成签到 ,获得积分10
26秒前
daheeeee完成签到,获得积分10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726