Semi-supervised Segmentation of Optic Cup in Retinal Fundus Images Using Variational Autoencoder

人工智能 分割 自编码 计算机科学 模式识别(心理学) 特征(语言学) 嵌入 尺度空间分割 计算机视觉 视杯(胚胎学) 图像分割 视盘 深度学习 青光眼 眼睛发育 眼科 表型 哲学 基因 医学 化学 生物化学 语言学
作者
Suman Sedai,Dwarikanath Mahapatra,Sajini Hewavitharanage,Stefan Maetschke,Rahil Garnavi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 75-82 被引量:37
标识
DOI:10.1007/978-3-319-66185-8_9
摘要

Accurate segmentation of optic cup and disc in retinal fundus images is essential to compute the cup to disc ratio parameter, which is important for glaucoma assessment. The ill-defined boundaries of optic cup makes the segmentation a lot more challenging compared to optic disc. Existing approaches have mainly used fully supervised learning that requires many labeled samples to build a robust segmentation framework. In this paper, we propose a novel semi-supervised method to segment the optic cup, which can accurately localize the anatomy using limited number of labeled samples. The proposed method leverages the inherent feature similarity from a large number of unlabeled images to train the segmentation model from a smaller number of labeled images. It first learns the parameters of a generative model from unlabeled images using variational autoencoder. The trained generative model provides the feature embedding of the images which allows the clustering of the related observation in the latent feature space. We combine the feature embedding with the segmentation autoencoder which is trained on the labeled images for pixel-wise segmentation of the cup region. The main novelty of the proposed approach is in the utilization of generative models for semi-supervised segmentation. Experimental results show that the proposed method successfully segments optic cup with small number of labeled images, and unsupervised feature embedding learned from unlabeled data improves the segmentation accuracy. Given the challenge of access to annotated medical images in every clinical application, the proposed framework is a key contribution and applicable for segmentation of different anatomies across various medical imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情怜蕾发布了新的文献求助10
2秒前
酷波er应助萧水白采纳,获得100
2秒前
wanci应助zhuangyuan采纳,获得30
3秒前
4秒前
FU123完成签到,获得积分20
4秒前
4秒前
4秒前
张佳良发布了新的文献求助10
5秒前
小沈完成签到,获得积分10
5秒前
1234556发布了新的文献求助10
6秒前
7秒前
小虎同学完成签到,获得积分10
8秒前
abc123发布了新的文献求助30
10秒前
满意的迎南完成签到 ,获得积分10
10秒前
11秒前
13秒前
15秒前
gege完成签到,获得积分10
16秒前
ma完成签到,获得积分10
16秒前
阳光妙菡发布了新的文献求助10
18秒前
19秒前
xsf完成签到,获得积分10
19秒前
kokodayour完成签到,获得积分10
20秒前
cui发布了新的文献求助10
20秒前
hmx完成签到,获得积分10
20秒前
cindy完成签到 ,获得积分10
22秒前
Auston_zhong完成签到,获得积分0
22秒前
XU博士完成签到,获得积分10
23秒前
科研通AI2S应助ccccc采纳,获得10
24秒前
24秒前
l玖发布了新的文献求助10
24秒前
烟花应助mushasha采纳,获得10
25秒前
26秒前
124dc发布了新的文献求助10
26秒前
sciDoge应助芋泥桃桃采纳,获得10
26秒前
顺利的如彤完成签到,获得积分20
28秒前
研友_ZAxKMn发布了新的文献求助10
29秒前
1234556完成签到,获得积分10
29秒前
思源应助公司账号2采纳,获得10
31秒前
万能图书馆应助咕呱采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938864
求助须知:如何正确求助?哪些是违规求助? 3484632
关于积分的说明 11029082
捐赠科研通 3214478
什么是DOI,文献DOI怎么找? 1776765
邀请新用户注册赠送积分活动 862996
科研通“疑难数据库(出版商)”最低求助积分说明 798629