Multimodal Feature Fusion for Bone Toxicity Prediction and Local Platform

作者
Pan Zhijie,Xin Yang,Churong Wang,Tianming Han,Qi Zhao,Pan Zhijie,Xin Yang,Churong Wang,Tianming Han,Qi Zhao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c02280
摘要

Drug-induced osteotoxicity refers to the detrimental effects of certain drugs on bone metabolism, density, and structure, posing serious safety concerns in clinical practice, drug development, and environmental health. Although previous studies have attempted to use machine learning methods to predict osteotoxicity, traditional approaches often struggle to capture the complex relationships between molecular structure and toxicity. To address this issue, we curate a dedicated bone toxicity data set and propose a novel multimodal predictive model, termed BTP-MFFGNN, which integrates molecular fingerprints with graph-based features. By designing a graph neural network specifically tailored to address the complex interactions in osteotoxicity, along with advanced attention mechanisms and adaptive gating fusion strategies, our model can precisely capture the nonlinear relationship between molecular structure and toxicity, revealing the intricate molecular interactions in depth. Experimental results demonstrate that BTP-MFFGNN achieves significant improvements in osteotoxicity prediction, with an ACC of 0.85 and an AUC of 0.92, representing 13 and 8% increases, respectively, compared to the best previous model. To enable practical application, we develop a local platform named OsteoToxPred (refer to the demo at https://pzj-123456.github.io/), which supports SMILES input and delivers rapid, visualized predictions. Our work provides an effective computational framework for bone toxicity assessment and offers valuable support for safer drug discovery and mechanism-driven toxicology research. All of the codes are freely available online at https://github.com/zhaoqi106/BTP-MFFGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
刚刚
Sunshine发布了新的文献求助10
刚刚
脑洞疼应助阔达老太采纳,获得10
刚刚
刚刚
深情安青应助剁手党采纳,获得10
1秒前
1秒前
qinshuo发布了新的文献求助10
2秒前
迅速的易巧完成签到 ,获得积分10
3秒前
4秒前
丘比特应助王jj采纳,获得10
4秒前
Lexa发布了新的文献求助10
4秒前
4秒前
我不困发布了新的文献求助10
4秒前
4秒前
天真绿完成签到,获得积分10
5秒前
5秒前
FPPL发布了新的文献求助30
5秒前
杨旭发布了新的文献求助10
5秒前
liuxia完成签到,获得积分10
6秒前
甜咸发布了新的文献求助10
6秒前
6秒前
花痴的便当完成签到,获得积分10
6秒前
7秒前
酷波er应助豆豆可采纳,获得10
7秒前
万能图书馆应助111采纳,获得10
7秒前
夏了发布了新的文献求助30
8秒前
8秒前
Christal发布了新的文献求助10
8秒前
在水一方应助淡淡夕阳采纳,获得10
8秒前
谭谨川完成签到,获得积分10
9秒前
111舒舒发布了新的文献求助10
9秒前
vesta完成签到,获得积分10
9秒前
9秒前
rose完成签到,获得积分10
9秒前
9秒前
9秒前
小马甲应助可靠月亮采纳,获得10
11秒前
11秒前
小顾完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316787
求助须知:如何正确求助?哪些是违规求助? 4459242
关于积分的说明 13874397
捐赠科研通 4349242
什么是DOI,文献DOI怎么找? 2388650
邀请新用户注册赠送积分活动 1382839
关于科研通互助平台的介绍 1352214