亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.

生物 分子方差分析 单倍型 人口 遗传学 核苷酸多样性 进化生物学 总体方差 统计 数学 估计员 基因 基因型 社会学 人口学
作者
Laurent Excoffier,Peter E. Smouse,Joseph M. Quattro
出处
期刊:Genetics [Oxford University Press]
卷期号:131 (2): 479-491 被引量:13880
标识
DOI:10.1093/genetics/131.2.479
摘要

Abstract We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syalonyui完成签到,获得积分10
2秒前
3秒前
5秒前
8秒前
Zhangtao完成签到,获得积分10
18秒前
粥粥完成签到 ,获得积分10
27秒前
欣喜的人龙完成签到 ,获得积分10
30秒前
12321234完成签到,获得积分10
37秒前
koaskdosad完成签到 ,获得积分10
46秒前
48秒前
49秒前
50秒前
50秒前
紫愿完成签到 ,获得积分10
51秒前
娇气的妙之完成签到,获得积分10
51秒前
所所应助可靠的寒风采纳,获得10
51秒前
liam发布了新的文献求助30
52秒前
丁三问发布了新的文献求助10
54秒前
通莲发布了新的文献求助10
54秒前
霍三石发布了新的文献求助10
55秒前
55秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
霍三石完成签到,获得积分10
1分钟前
leave完成签到 ,获得积分10
1分钟前
丁三问完成签到,获得积分10
1分钟前
今后应助琪琪扬扬采纳,获得10
1分钟前
小二郎应助Bella采纳,获得50
1分钟前
1分钟前
852应助吱吱采纳,获得10
1分钟前
若有光发布了新的文献求助10
1分钟前
1分钟前
千纸鹤完成签到 ,获得积分10
1分钟前
山楂完成签到,获得积分10
1分钟前
zzr发布了新的文献求助10
1分钟前
1分钟前
小龙完成签到 ,获得积分10
1分钟前
zzr完成签到,获得积分10
1分钟前
柚子完成签到 ,获得积分10
2分钟前
科研通AI2S应助旅行者采纳,获得10
2分钟前
ydz完成签到,获得积分10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837288
求助须知:如何正确求助?哪些是违规求助? 3379527
关于积分的说明 10509719
捐赠科研通 3099150
什么是DOI,文献DOI怎么找? 1706958
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552