Differentiation and classification of Chinese Luzhou‐flavor liquors with different geographical origins based on fingerprint and chemometric analysis

风味 主成分分析 指纹(计算) 可追溯性 食品科学 化学 数学 统计 计算机科学 人工智能
作者
Qian Yu,Liang Zhang,Yue Sun,Yongqing Tang,Dan Li,Huaishan Zhang,S. C. Yuan,Jinsong Li
出处
期刊:Journal of Food Science [Wiley]
卷期号:86 (5): 1861-1877 被引量:13
标识
DOI:10.1111/1750-3841.15692
摘要

Abstract In order to differentiate and characterize Chinese Luzhou‐flavor liquor according to geographical origins, the volatile flavor compounds were analyzed for forty commercial Luzhou‐flavor liquor samples from Sichuan, Jiangsu, and Hubei provinces. A total of 113 volatile flavor compounds were quantified; among them, 29 flavor compounds were quantified according to the internal standard method. The differences in flavor composition among different brands of Luzhou‐flavor liquor were compared. A data matrix of 64 (flavor components) × 40 (samples) was studied and interpreted using chemometric analysis. The research object could be naturally clustered according to geographical origin (brand) based on the hierarchical cluster analysis (HCA), principal component analysis (PCA) and multivariate analysis of variance (MANOVA) methods. A 100% of predication ability was obtained by the application of K‐nearest neighbor model (KNN) for study sample classification. The results demonstrate that the abundance of volatile flavor components in liquors combined with appropriate multivariate statistical methods could be used for the division and traceability of liquors from different geographic origins. Practical Application This study can provide the basis for the identification of liquor authenticity and the traceability of liquor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏信怜完成签到,获得积分10
刚刚
1秒前
11发布了新的文献求助10
1秒前
Yuan发布了新的文献求助10
1秒前
2秒前
ZQH发布了新的文献求助10
4秒前
4秒前
SYLH应助kk采纳,获得10
5秒前
李朝富发布了新的文献求助10
6秒前
11完成签到,获得积分10
7秒前
科研通AI5应助fjtao采纳,获得10
7秒前
luqiu完成签到,获得积分10
7秒前
小蘑菇应助刘一三采纳,获得10
7秒前
bkagyin应助陈美宏采纳,获得10
8秒前
8秒前
晨曦发布了新的文献求助10
8秒前
风趣的寻凝完成签到,获得积分10
10秒前
怕孤单的破茧完成签到,获得积分10
11秒前
Yuan完成签到,获得积分10
11秒前
yyy完成签到,获得积分10
12秒前
大气的画板完成签到,获得积分10
13秒前
13秒前
老实的菲鹰应助忍忍采纳,获得10
14秒前
14秒前
汉堡包应助熊雅采纳,获得10
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
16秒前
17秒前
自由宛筠发布了新的文献求助10
18秒前
lindalin发布了新的文献求助10
19秒前
李爱国应助大气的画板采纳,获得10
20秒前
20秒前
YN发布了新的文献求助10
20秒前
henry发布了新的文献求助10
21秒前
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133351
求助须知:如何正确求助?哪些是违规求助? 3670282
关于积分的说明 11605942
捐赠科研通 3366713
什么是DOI,文献DOI怎么找? 1849688
邀请新用户注册赠送积分活动 913255
科研通“疑难数据库(出版商)”最低求助积分说明 828523