材料科学
电子转移
共轭体系
电化学
纳米技术
聚电解质
电极
化学工程
半导体
电子传输链
水溶液
羟醛缩合
电化学电位
阴极保护
氧化还原
铵
纳米棒
生物传感器
混合材料
生物相容性材料
钌
表面改性
缩合反应
水介质
电子
电催化剂
作者
Chuanhao Yao,Yilu Song,Samantha R. McCuskey,Jianan Cai,Weidong Zhang,Nansi Zhou,David Ohayon,Fernando López‐García,Alexey I. Berdyugin,Xianwen Mao,Guillermo C. Bazan
标识
DOI:10.1002/adma.202521386
摘要
ABSTRACT Bioelectrochemical systems interconvert electrical and chemical energy using living microorganisms, but their efficiency remains limited by slow electron exchange across abiotic‐biotic interfaces. Herein, a spontaneous n‐doped water‐dispersible conjugated polyelectrolyte (CPE), PNB, is developed. The CPE self‐assembles on the surface of Shewanella oneidensis MR‐1 to create biocompatible coatings that accelerate inward extracellular electron transfer. PNB is obtained via an aldol condensation reaction and is described by an acceptor‐acceptor π‐conjugated backbone bearing quaternary ammonium side chains. This molecular architecture enables stable n‐doping in aqueous media and a broad reduction potential window. When integrated as a cathodic interlayer, PNB‐ S. oneidensis biohybrids exhibit a 14‐fold enhancement in electron injection and a 4‐fold increase in electro‐driven succinate production, compared to unmodified cells. Single‐cell electrochemical mapping confirms faster, more efficient per‐cell electron influx. These findings demonstrate that n‐type CPEs can bridge external electrodes with cellular metabolisms, opening a material‐based route to high‐performance bioelectronic and electrosynthetic systems. By enabling more facile charge transfer between synthetic semiconductors and living catalysts, this work establishes a soft materials‐driven framework for designing electronically coupled microbial systems with potential to advance sustainable bioelectronic technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI