Malignancy risk stratification of cystic renal lesions based on a contrast-enhanced CT-based machine learning model and a clinical decision algorithm

医学 恶性肿瘤 放射科 神经组阅片室 逻辑回归 接收机工作特性 算法 无线电技术 磁共振成像 介入放射学 机器学习 人工智能 计算机科学 内科学 神经学 精神科
作者
Jérémy Dana,Thierry Lefebvre,Peter Savadjiev,Sylvain Bodard,Simon Gauvin,Sahir Bhatnagar,Reza Forghani,O. Hélénon,Caroline Reinhold
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (6): 4116-4127 被引量:17
标识
DOI:10.1007/s00330-021-08449-w
摘要

To distinguish benign from malignant cystic renal lesions (CRL) using a contrast-enhanced CT-based radiomics model and a clinical decision algorithm.This dual-center retrospective study included patients over 18 years old with CRL between 2005 and 2018. The reference standard was histopathology or 4-year imaging follow-up. Training and testing datasets were acquired from two institutions. Quantitative 3D radiomics analyses were performed on nephrographic phase CT images. Ten-fold cross-validated LASSO regression was applied to the training dataset to identify the most discriminative features. A logistic regression model was trained to classify malignancy and tested on the independent dataset. Reported metrics included areas under the receiver operating characteristic curves (AUC) and balanced accuracy. Decision curve analysis for stratifying patients for surgery was performed in the testing dataset. A decision algorithm was built by combining consensus radiological readings of Bosniak categories and radiomics-based risks.A total of 149 CRL (139 patients; 65 years [56-72]) were included in the training dataset-35 Bosniak(B)-IIF (8.6% malignancy), 23 B-III (43.5%), and 23 B-IV (87.0%)-and 50 CRL (46 patients; 61 years [51-68]) in the testing dataset-12 B-IIF (8.3%), 10 B-III (60.0%), and 9 B-IV (100%). The machine learning model achieved high diagnostic performance in predicting malignancy in the testing dataset (AUC = 0.96; balanced accuracy = 94%). There was a net benefit across threshold probabilities in using the clinical decision algorithm over management guidelines based on Bosniak categories.CT-based radiomics modeling accurately distinguished benign from malignant CRL, outperforming the Bosniak classification. The decision algorithm best stratified lesions for surgery and active surveillance.• The radiomics model achieved excellent diagnostic performance in identifying malignant cystic renal lesions in an independent testing dataset (AUC = 0.96). • The machine learning-enhanced decision algorithm outperformed the management guidelines based on the Bosniak classification for stratifying patients to surgical ablation or active surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
斯文败类应助charles采纳,获得10
4秒前
paper完成签到 ,获得积分10
5秒前
hy_发布了新的文献求助10
5秒前
李伟发布了新的文献求助10
7秒前
hy_完成签到,获得积分10
11秒前
黎黎原上草完成签到,获得积分10
13秒前
14秒前
隐形曼青应助zcydbttj2011采纳,获得10
14秒前
天真大神发布了新的文献求助10
15秒前
17秒前
斐然完成签到,获得积分10
18秒前
18秒前
19秒前
不爱干饭发布了新的文献求助10
20秒前
22秒前
清爽花卷发布了新的文献求助10
23秒前
ZZZZZZZZF应助晓巨人采纳,获得10
23秒前
科研通AI2S应助唐唐采纳,获得10
23秒前
王立为发布了新的文献求助10
23秒前
爆米花应助Aurora采纳,获得10
24秒前
26秒前
26秒前
dachengzi发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
28秒前
Hello应助超级绫采纳,获得10
28秒前
29秒前
30秒前
hongyi完成签到,获得积分10
30秒前
LIO发布了新的文献求助10
30秒前
31秒前
双丁宝贝发布了新的文献求助10
31秒前
morill发布了新的文献求助10
32秒前
33秒前
路佳佳发布了新的文献求助10
33秒前
liam发布了新的文献求助30
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110