电催化剂
过电位
纳米材料基催化剂
纳米团簇
催化作用
材料科学
X射线吸收精细结构
铂金
纳米晶材料
石墨烯
光化学
化学工程
纳米颗粒
纳米技术
化学
物理化学
光谱学
电化学
有机化学
电极
物理
工程类
量子力学
作者
Zhiyi Sun,Yuqi Yang,Chaohe Fang,Yinchao Yao,Fengjuan Qin,Hongfei Gu,Qingqing Liu,Wenjing Xu,Hao Tang,Zheng Jiang,Binghui Ge,Wenxing Chen,Zhuo Chen
出处
期刊:Small
[Wiley]
日期:2022-07-24
卷期号:18 (33)
被引量:23
标识
DOI:10.1002/smll.202203422
摘要
Abstract In heterogeneous catalysis, metal particle morphology and size can influence markedly the activity. It is of great significance to rationally design and control the synthesis of Pt at the atomic level to demonstrate the structure‐activity relationship toward electrocatalysis. Herein, a powerful strategy is reported to synthesize graphene‐supported platinum‐based electrocatalyst, that is, nanocatalysts with controllable size can be prepared by iced photochemical method, including single atoms (Pt‐SA@HG), nanoclusters (Pt‐Clu@HG), and nanocrystalline (Pt‐Nc@HG). The Pt‐SA@HG exhibits unexpected electrocatalytic hydrogen evolution reaction (HER) performances with 13 mV overpotential at 10 mA cm −2 current densities which surpass Pt‐Clu@HG and Pt‐Nc@HG. The in situ X‐ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations determine the Pt‐C 3 active site is linchpin to the excellent HER performance of Pt‐SA@HG. Compared with the traditional Pt‐N x coordination structure, the pure carbon coordinated Pt‐C 3 site is more favorable for HER. This work opens up a new way to adjust the metal particle size and catalytic performance of graphene at a multiscale level.
科研通智能强力驱动
Strongly Powered by AbleSci AI