卡尔曼滤波器
算法
计算机科学
颗粒过滤器
快速卡尔曼滤波
像素
估计员
相(物质)
集合卡尔曼滤波器
扩展卡尔曼滤波器
数学
计算机视觉
人工智能
物理
量子力学
统计
作者
Xianming Xie,Li Jiaying
出处
期刊:Applied Optics
[The Optical Society]
日期:2022-07-06
卷期号:61 (23): 6677-6677
被引量:3
摘要
This paper presents a robust phase unwrapping algorithm based on a particle-Kalman filter for wrapped fringe patterns by combining a particle filter and an extended Kalman filter, which formulates the phase unwrapping problem of wrapped fringe patterns as an optimal state estimation problem under the frame of the particle-Kalman filter. First, a state space equation for state variables is extended to the second order of Taylor series, and a local phase gradient estimator based on a modified matrix pencil model is used to obtain the first-order and second-order phase gradient information required by the extended state space equation, which is conducive to enhancing the phase unwrapping accuracy of the proposed procedure. Second, the initial estimate of unwrapped phase is obtained through applying an efficient phase unwrapping program based on a particle filter to unwrap noisy wrapped pixels. Finally, the initial estimate of unwrapped phase obtained by the particle filter is taken as the predicted estimate of state variables and further processed by the extended Kalman filter to obtain the final estimate of unwrapped phase. In addition, an efficient quality-guided strategy that has been demonstrated well is used to guarantee that the particle-Kalman filter efficiently and accurately unwraps wrapped pixels along a suitable path. Results obtained with synthetic data and experimental data demonstrate the effectiveness of the proposed method and show that this new approach can obtain more acceptable solutions from noisy wrapped fringe patterns, with respect to some of the most commonly used methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI