亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Beat-by-beat Classification of ECG Signals with Machine Learning Algorithm for Cardiac Episodes

朴素贝叶斯分类器 决策树 人工智能 人工神经网络 计算机科学 支持向量机 心力衰竭 模式识别(心理学) 逻辑回归 机器学习 医学 内科学
作者
I Hua Tsai,Bashir I. Morshed
标识
DOI:10.1109/eit53891.2022.9813902
摘要

Heart failure (HF) is a common clinical syndrome of cardiac episode leading to a variety of cardiac diseases. Detecting these cardiac episodes from electrocardiogram (ECG or EKG) data and classifying these large data automatically with high accuracy in real-time is critical for useful application of wearables targeting cardiac disease monitoring. With this motivation, in this study, we used the BIDMC Congestive Heart Failure (CHF) datasets (from PhysioNet database). A total of 15 patient records was analyzed, which have NYHA Class level III and IV patients from the database. Simultaneous measurements of the 2 leads of ECG were stored in the record. The captured data was sampled at 250 Hz. The extracted features were for three categories: temporal, spectral, and statistical. In total, we extracted 28 features out of which 7 were of amplitude types, 6 were based on frequency, and the remaining 15 were statistical features. Machine learning models explored include SVM, KNN, ensemble tree, neural network, decision tree, naive bayes, and logistic regression. We evaluated different model performance in each patient data and combined patient data. In our analysis, neural network was the best performer in terms of accuracy for cardiac patients. We further studied neural network to test sensitivity, specificity, accuracy, precision, f1-score to evaluate the best performer statistics. Neural network has 99.5% overall accuracy for interpatient data classification, and was also among the best performers. In interpatient classification, the performance was: sensitivity 99.80%, specificity 99.0%. accuracy 99.42%, precision 99.80%, and F1 score 99.64%. Accurate detection of ECG beat classes using this approach can allow real-time cardiac disease monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
40秒前
John完成签到,获得积分10
58秒前
MchemG应助John采纳,获得30
1分钟前
寒冷的如之完成签到 ,获得积分10
1分钟前
云朵完成签到 ,获得积分10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
沐熙发布了新的文献求助10
2分钟前
emchavezangel完成签到,获得积分10
2分钟前
SYLH应助emchavezangel采纳,获得10
2分钟前
香蕉觅云应助洒脱鲲采纳,获得10
2分钟前
Ocean完成签到,获得积分10
2分钟前
沐熙发布了新的文献求助10
2分钟前
高兴凝安完成签到 ,获得积分10
2分钟前
liuliu0801完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
沐熙完成签到,获得积分10
3分钟前
3分钟前
沐熙发布了新的文献求助10
3分钟前
3分钟前
北风完成签到,获得积分10
3分钟前
水的很厉害完成签到,获得积分10
3分钟前
月儿完成签到 ,获得积分10
4分钟前
阔达的非笑完成签到 ,获得积分10
4分钟前
小马甲应助Silence采纳,获得10
4分钟前
4分钟前
ddeqbbw完成签到,获得积分10
4分钟前
Silence发布了新的文献求助10
4分钟前
沐熙发布了新的文献求助10
4分钟前
4分钟前
在水一方应助狮子采纳,获得10
4分钟前
小马甲应助谦让的西装采纳,获得10
5分钟前
6分钟前
6分钟前
狮子发布了新的文献求助10
6分钟前
猜不猜不完成签到 ,获得积分10
6分钟前
狮子发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833819
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492541
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842