Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm

元启发式 计算机科学 水准点(测量) 粒子群优化 算法 数学优化 人口 人工蜂群算法 元优化 帝国主义竞争算法 最优化问题 多群优化 人工智能 数学 社会学 人口学 大地测量学 地理
作者
Olaide N. Oyelade,Absalom E. Ezugwu,Tehnan I. A. Mohamed,Laith Abualigah
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 16150-16177 被引量:92
标识
DOI:10.1109/access.2022.3147821
摘要

Nature computing has evolved with exciting performance to solve complex real-world combinatorial optimization problems. These problems span across engineering, medical sciences, and sciences generally. The Ebola virus has a propagation strategy that allows individuals in a population to move among susceptible, infected, quarantined, hospitalized, recovered, and dead sub-population groups. Motivated by the effectiveness of this strategy of propagation of the disease, a new bio-inspired and population-based optimization algorithm is proposed. This study presents a novel metaheuristic algorithm named Ebola Optimization Search Algorithm (EOSA) based on the propagation mechanism of the Ebola virus disease. First, we designed an improved SIR model of the disease, namely SEIR-HVQD: Susceptible (S), Exposed (E), Infected (I), Recovered (R), Hospitalized (H), Vaccinated (V), Quarantine (Q), and Death or Dead (D). Secondly, we represented the new model using a mathematical model based on a system of first-order differential equations. A combination of the propagation and mathematical models was adapted for developing the new metaheuristic algorithm. To evaluate the performance and capability of the proposed method in comparison with other optimization methods, two sets of benchmark functions consisting of forty-seven (47) classical and thirty (30) constrained IEEE-CEC benchmark functions were investigated. The results indicate that the performance of the proposed algorithm is competitive with other state-of-the-art optimization methods based on scalability, convergence, and sensitivity analyses. Extensive simulation results show that the EOSA outperforms popular metaheuristic algorithms such as the Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), and Artificial Bee Colony Algorithm (ABC). Also, the algorithm was applied to address the complex problem of selecting the best combination of convolutional neural network (CNN) hyperparameters in the image classification of digital mammography. Results obtained showed the optimized CNN architecture successfully detected breast cancer from digital images at an accuracy of 96.0%. The source code of EOSA is publicly available at https://github.com/NathanielOy/EOSA_Metaheuristic .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张桂平发布了新的文献求助10
刚刚
加油发布了新的文献求助10
刚刚
天Q发布了新的文献求助10
1秒前
YJY发布了新的文献求助10
2秒前
2秒前
2秒前
李健的小迷弟应助psyYang采纳,获得10
2秒前
pluto应助nyawjt采纳,获得10
3秒前
田様应助li采纳,获得10
3秒前
3秒前
菜头完成签到,获得积分10
3秒前
han关闭了han文献求助
3秒前
4秒前
4秒前
4秒前
5秒前
歪比巴卜完成签到,获得积分20
5秒前
北风完成签到,获得积分10
5秒前
6秒前
6秒前
wyx发布了新的文献求助10
7秒前
huangjindx发布了新的文献求助10
7秒前
7秒前
7秒前
左左发布了新的文献求助10
8秒前
大萝贝发布了新的文献求助10
9秒前
驿凡完成签到,获得积分10
10秒前
你好发布了新的文献求助10
10秒前
紫沐寒完成签到,获得积分10
10秒前
10秒前
10秒前
摸摸完成签到,获得积分20
11秒前
11秒前
12秒前
summy发布了新的文献求助30
12秒前
老迟到的小蘑菇完成签到,获得积分10
12秒前
科目三应助健壮听露采纳,获得10
13秒前
共享精神应助雨的痕迹采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926146
求助须知:如何正确求助?哪些是违规求助? 3470803
关于积分的说明 10965052
捐赠科研通 3200460
什么是DOI,文献DOI怎么找? 1768335
邀请新用户注册赠送积分活动 857462
科研通“疑难数据库(出版商)”最低求助积分说明 796036