Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm

元启发式 计算机科学 水准点(测量) 粒子群优化 算法 数学优化 人口 人工蜂群算法 元优化 帝国主义竞争算法 最优化问题 多群优化 人工智能 数学 社会学 人口学 大地测量学 地理
作者
Olaide N. Oyelade,Absalom E. Ezugwu,Tehnan I. A. Mohamed,Laith Abualigah
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 16150-16177 被引量:92
标识
DOI:10.1109/access.2022.3147821
摘要

Nature computing has evolved with exciting performance to solve complex real-world combinatorial optimization problems. These problems span across engineering, medical sciences, and sciences generally. The Ebola virus has a propagation strategy that allows individuals in a population to move among susceptible, infected, quarantined, hospitalized, recovered, and dead sub-population groups. Motivated by the effectiveness of this strategy of propagation of the disease, a new bio-inspired and population-based optimization algorithm is proposed. This study presents a novel metaheuristic algorithm named Ebola Optimization Search Algorithm (EOSA) based on the propagation mechanism of the Ebola virus disease. First, we designed an improved SIR model of the disease, namely SEIR-HVQD: Susceptible (S), Exposed (E), Infected (I), Recovered (R), Hospitalized (H), Vaccinated (V), Quarantine (Q), and Death or Dead (D). Secondly, we represented the new model using a mathematical model based on a system of first-order differential equations. A combination of the propagation and mathematical models was adapted for developing the new metaheuristic algorithm. To evaluate the performance and capability of the proposed method in comparison with other optimization methods, two sets of benchmark functions consisting of forty-seven (47) classical and thirty (30) constrained IEEE-CEC benchmark functions were investigated. The results indicate that the performance of the proposed algorithm is competitive with other state-of-the-art optimization methods based on scalability, convergence, and sensitivity analyses. Extensive simulation results show that the EOSA outperforms popular metaheuristic algorithms such as the Particle Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), and Artificial Bee Colony Algorithm (ABC). Also, the algorithm was applied to address the complex problem of selecting the best combination of convolutional neural network (CNN) hyperparameters in the image classification of digital mammography. Results obtained showed the optimized CNN architecture successfully detected breast cancer from digital images at an accuracy of 96.0%. The source code of EOSA is publicly available at https://github.com/NathanielOy/EOSA_Metaheuristic .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ca0ca0完成签到,获得积分10
刚刚
tyy发布了新的文献求助10
1秒前
爆米花应助冰糖葫芦娃采纳,获得10
3秒前
xiangqiuyu发布了新的文献求助10
3秒前
4秒前
阿童木完成签到,获得积分10
5秒前
5秒前
liuzm完成签到,获得积分10
7秒前
rockhai发布了新的文献求助10
8秒前
中旬日完成签到,获得积分10
9秒前
ww发布了新的文献求助10
9秒前
领导范儿应助务实的冬寒采纳,获得10
10秒前
阳和启蛰发布了新的文献求助10
10秒前
xiangqiuyu完成签到,获得积分10
12秒前
多送点完成签到,获得积分10
13秒前
刘小九完成签到,获得积分20
13秒前
阳和启蛰完成签到,获得积分10
13秒前
科研通AI2S应助刘子豪采纳,获得10
14秒前
冰糖葫芦娃完成签到,获得积分10
15秒前
科研通AI5应助myl采纳,获得10
15秒前
ww完成签到,获得积分20
17秒前
斯文败类应助无辜绿竹采纳,获得10
17秒前
19秒前
21秒前
23秒前
123发布了新的文献求助10
23秒前
NN发布了新的文献求助10
24秒前
25秒前
26秒前
26秒前
干净的人达完成签到 ,获得积分10
27秒前
27秒前
28秒前
29秒前
tyy完成签到,获得积分10
30秒前
www完成签到 ,获得积分10
30秒前
贰鸟完成签到,获得积分0
30秒前
Yvonne发布了新的文献求助10
31秒前
31秒前
慧慧发布了新的文献求助10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979