Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour

无线电技术 医学 单变量 胶质瘤 神经组阅片室 多元分析 多元统计 放射科 单变量分析 对比度(视觉) 核医学 病理 内科学 神经学 人工智能 统计 数学 计算机科学 精神科 癌症研究
作者
Changliang Su,Jingjing Jiang,Shun Zhang,Jingjing Shi,Kaibin Xu,Nanxi Shen,Jiaxuan Zhang,Li Li,Lingyun Zhao,Ju Zhang,Yuanyuan Qin,Yong Liu,Wenzhen Zhu
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (4): 1986-1996 被引量:92
标识
DOI:10.1007/s00330-018-5704-8
摘要

To explore the feasibility and diagnostic performance of radiomics based on anatomical, diffusion and perfusion MRI in differentiating among glioma subtypes and predicting tumour proliferation. 220 pathology-confirmed gliomas and ten contrasts were included in the retrospective analysis. After being registered to T2FLAIR images and resampling to 1 mm3 isotropically, 431 radiomics features were extracted from each contrast map within a semi-automatic defined tumour volume. For single-contrast and the combination of all contrasts, correlations between the radiomics features and pathological biomarkers were revealed by partial correlation analysis, and multivariate models were built to identify the best predictive models with adjusted 0.632+ bootstrap AUC. In univariate analysis, both non-wavelet and wavelet radiomics features were correlated significantly with tumour grade and the Ki-67 labelling index. The max R was 0.557 (p = 2.04E-14) in T1C for tumour grade and 0.395 (p = 2.33E-07) in ADC for Ki-67. In the multivariate analysis, the combination of all-contrast radiomics features had the highest AUCs in both differentiating among glioma subtypes and predicting proliferation compared with those in single-contrast images. For low-/high-grade gliomas, the best AUC was 0.911. In differentiating among glioma subtypes, the best AUC was 0.896 for grades II–III, 0.997 for grades II–IV, and 0.881 for grades III–IV. In predicting proliferation levels, multicontrast features led to an AUC of 0.936. Multicontrast radiomics supplies complementary information on both geometric characters and molecular biological traits, which correlated significantly with tumour grade and proliferation. Combining all-contrast radiomics models might precisely predict glioma biological behaviour, which may be attributed to presurgical personal diagnosis. • Multicontrast MRI radiomics features are significantly correlated with tumour grade and Ki-67 LI. • Multimodality MRI provides independent but supplemental information in assessing glioma pathological behaviour. • Combined multicontrast MRI radiomics can precisely predict glioma subtypes and proliferation levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助舒适翠柏采纳,获得10
1秒前
1秒前
2秒前
潘子完成签到,获得积分10
2秒前
吕凯良发布了新的文献求助10
3秒前
4秒前
达奚东权发布了新的文献求助10
6秒前
6秒前
无花果应助允许一切发生采纳,获得10
7秒前
Wanfeng发布了新的文献求助30
7秒前
8秒前
图南完成签到 ,获得积分10
8秒前
zhy完成签到 ,获得积分10
9秒前
晚思闲云完成签到 ,获得积分10
9秒前
huangdinghuang完成签到,获得积分10
9秒前
鼻揩了转去完成签到,获得积分0
9秒前
silence完成签到,获得积分10
11秒前
dai关闭了dai文献求助
12秒前
传奇3应助飒saus采纳,获得10
12秒前
思源应助标致的飞机采纳,获得30
14秒前
乔乔完成签到,获得积分10
17秒前
17秒前
17秒前
左旋多巴完成签到,获得积分10
17秒前
18秒前
林夕水函完成签到,获得积分10
18秒前
sam关闭了sam文献求助
20秒前
所所应助msk采纳,获得10
22秒前
shinble发布了新的文献求助30
22秒前
lucky发布了新的文献求助10
23秒前
哇咔咔完成签到,获得积分10
23秒前
KKWeng发布了新的文献求助10
23秒前
吕凯良发布了新的文献求助10
23秒前
Mint发布了新的文献求助10
23秒前
不久后扽下二号完成签到,获得积分10
24秒前
24秒前
充电宝应助韦娜采纳,获得10
24秒前
24秒前
25秒前
bkagyin应助穆振家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5363498
求助须知:如何正确求助?哪些是违规求助? 4492989
关于积分的说明 13989153
捐赠科研通 4396644
什么是DOI,文献DOI怎么找? 2414997
邀请新用户注册赠送积分活动 1407701
关于科研通互助平台的介绍 1382541