Clarifying the atomic origin of electron killers in β-Ga2O3 from the first-principles study of electron capture rates

带隙 材料科学 八面体 电子俘获 导带 半导体 四面体 电子 结晶学 原子物理学 化学 物理 光电子学 晶体结构 核物理学
作者
Zhao-Jun Suo,Lin‐Wang Wang,Shu‐Shen Li,Junwei Luo
出处
期刊:Journal of Semiconductors [IOP Publishing]
卷期号:43 (11): 112801-112801 被引量:5
标识
DOI:10.1088/1674-4926/43/11/112801
摘要

Abstract The emerging wide bandgap semiconductor -Ga 2 O 3 has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors. Deep-level defects in -Ga 2 O 3 have been intensively studied towards improving device performance. Deep-level signatures E 1 , E 2 , and E 3 with energy positions of 0.55–0.63, 0.74–0.81, and 1.01–1.10 eV below the conduction band minimum have frequently been observed and extensively investigated, but their atomic origins are still under debate. In this work, we attempt to clarify these deep-level signatures from the comparison of theoretically predicted electron capture cross-sections of suggested candidates, Ti and Fe substituting Ga on a tetrahedral site (Ti GaI and Fe GaI ) and an octahedral site (Ti GaII and Fe GaII ), to experimentally measured results. The first-principles approach predicted electron capture cross-sections of Ti GaI and Ti GaII defects are 8.56 × 10 –14 and 2.97 × 10 –13 cm 2 , in good agreement with the experimental values of E 1 and E 3 centers, respectively. We, therefore, confirmed that E 1 and E 3 centers are indeed associated with Ti GaI and Ti GaII defects, respectively. Whereas the predicted electron capture cross-sections of Fe Ga defect are two orders of magnitude larger than the experimental value of the E 2 , indicating E 2 may have other origins like C Ga and Ga i , rather than common believed Fe Ga .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观松鼠发布了新的文献求助10
刚刚
iwonder关注了科研通微信公众号
刚刚
刚刚
负责凛完成签到,获得积分10
刚刚
刚刚
1秒前
fgb完成签到 ,获得积分20
1秒前
1秒前
SXH完成签到,获得积分10
2秒前
要减肥发布了新的文献求助10
2秒前
优美的听白完成签到,获得积分20
3秒前
啥也不会完成签到 ,获得积分10
3秒前
dddd完成签到 ,获得积分10
3秒前
研友_Z72WEn发布了新的文献求助10
3秒前
4秒前
4秒前
bkagyin应助甜蜜乐松采纳,获得10
4秒前
朱博完成签到,获得积分10
5秒前
丁一完成签到,获得积分10
5秒前
5秒前
5秒前
su发布了新的文献求助10
6秒前
壮观书竹完成签到,获得积分10
6秒前
背后的大米完成签到,获得积分10
6秒前
浩多多完成签到,获得积分10
6秒前
8秒前
111发布了新的文献求助30
8秒前
HC完成签到 ,获得积分10
8秒前
无花果应助wzy采纳,获得10
9秒前
现代梦琪完成签到 ,获得积分20
9秒前
luchunze发布了新的文献求助100
9秒前
张丫丫发布了新的文献求助30
9秒前
10秒前
小宁发布了新的文献求助10
10秒前
10秒前
许甜甜鸭应助777采纳,获得10
10秒前
slj发布了新的文献求助10
11秒前
11秒前
11秒前
karyoter完成签到,获得积分10
12秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828418
求助须知:如何正确求助?哪些是违规求助? 3370761
关于积分的说明 10464797
捐赠科研通 3090653
什么是DOI,文献DOI怎么找? 1700487
邀请新用户注册赠送积分活动 817859
科研通“疑难数据库(出版商)”最低求助积分说明 770566