Machine-learning accelerated identification of exfoliable two-dimensional materials

计算机科学 随机森林 机器学习 鉴定(生物学) 人工智能 人工神经网络 分类器(UML) 光学(聚焦) 深度学习 多样性(控制论) 物理 植物 生物 光学
作者
Mohammad Tohidi Vahdat,Kumar Varoon Agrawal,Giovanni Pizzi
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045014-045014 被引量:16
标识
DOI:10.1088/2632-2153/ac9bca
摘要

Abstract Two-dimensional (2D) materials have been a central focus of recent research because they host a variety of properties, making them attractive both for fundamental science and for applications. It is thus crucial to be able to identify accurately and efficiently if bulk three-dimensional (3D) materials are formed by layers held together by a weak binding energy that, thus, can be potentially exfoliated into 2D materials. In this work, we develop a machine-learning (ML) approach that, combined with a fast preliminary geometrical screening, is able to efficiently identify potentially exfoliable materials. Starting from a combination of descriptors for crystal structures, we work out a subset of them that are crucial for accurate predictions. Our final ML model, based on a random forest classifier, has a very high recall of 98%. Using a SHapely Additive exPlanations analysis, we also provide an intuitive explanation of the five most important variables of the model. Finally, we compare the performance of our best ML model with a deep neural network architecture using the same descriptors. To make our algorithms and models easily accessible, we publish an online tool on the Materials Cloud portal that only requires a bulk 3D crystal structure as input. Our tool thus provides a practical yet straightforward approach to assess whether any 3D compound can be exfoliated into 2D layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南无双发布了新的文献求助10
1秒前
朴素的士晋完成签到 ,获得积分10
1秒前
3秒前
雲雀发布了新的文献求助10
3秒前
张冰莹完成签到,获得积分20
4秒前
小马完成签到,获得积分20
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得20
6秒前
liang发布了新的文献求助10
6秒前
33应助科研通管家采纳,获得10
6秒前
mutong应助科研通管家采纳,获得10
6秒前
6秒前
烟花应助科研通管家采纳,获得30
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
七月流火应助科研通管家采纳,获得200
6秒前
元谷雪发布了新的文献求助10
6秒前
33应助科研通管家采纳,获得10
6秒前
mutong应助科研通管家采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Harry应助科研通管家采纳,获得10
6秒前
minkuuuuuuu应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
聪明采白完成签到,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
k96完成签到,获得积分10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540192
求助须知:如何正确求助?哪些是违规求助? 4626761
关于积分的说明 14600756
捐赠科研通 4567792
什么是DOI,文献DOI怎么找? 2504197
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453505