Sampling-attention deep learning network with transfer learning for large-scale urban point cloud semantic segmentation

计算机科学 增采样 学习迁移 分割 点云 深度学习 人工智能 采样(信号处理) 协议(科学) 云计算 特征(语言学) 机器学习 数据挖掘 计算机视觉 图像(数学) 操作系统 滤波器(信号处理) 哲学 病理 医学 语言学 替代医学
作者
Yunxiang Zhou,Ankang Ji,Limao Zhang,Xiaolong Xue
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105554-105554 被引量:19
标识
DOI:10.1016/j.engappai.2022.105554
摘要

Targeting the development of smart cities to facilitate the significant analysis of large-scale urban for construction and update. This research develops a new method named transfer learning-based sampling-attention network (TSANet) to act on 3D urban point clouds for semantic segmentation. The main contributions of this research are a segmentation model and a transfer learning protocol, where the segmentation model adopts the point downsampling–upsampling structure for time efficiency, the embedding method and an attention mechanism for point cloud feature processing, and the transfer learning protocol is employed to reduce the data requirements and labeling efforts by using prior knowledge for practical application. In addition, a focal loss is designed to assist the model for feature extraction and learning with handling data imbalance. To demonstrate the efficiency and effectiveness of the developed method, a realistic point cloud dataset of Cambridge and Birmingham cities is utilized as a case study. The results demonstrate that (1) the developed method has promising performance with overall accuracy (OA) of 0.9133 and Mean Intersection over Union (MIoU) of 0.5588; (2) the proposed transfer learning protocol contributes to the core model performance by fully combining accuracy and time efficiency, offering a 74.91% improvement in time efficiency; (3) the developed TSANet outperforms other state-of-the-art models, such as PointNet++ and DGCNN, by comparing the accuracy and time efficiency. Overall, the method developed in this research is capable of great potential as a practical application tool by presenting accurate, effective, and efficient results for semantic segmentation of large-scale 3D urban point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxq发布了新的文献求助10
刚刚
刚刚
调皮黑猫应助weidongwu采纳,获得10
刚刚
英姑应助Shaka采纳,获得10
1秒前
FY完成签到,获得积分10
1秒前
whitexue完成签到,获得积分10
1秒前
2秒前
妮妮发布了新的文献求助10
3秒前
3秒前
m木宁木蒙应助小石头采纳,获得20
3秒前
3秒前
3秒前
落雪芊芊发布了新的文献求助30
4秒前
敏感的曼岚完成签到 ,获得积分20
5秒前
小马甲应助傻傻的哈密瓜采纳,获得10
5秒前
研友_nqrKQZ发布了新的文献求助10
6秒前
英俊的铭应助swy采纳,获得10
6秒前
动漫大师发布了新的文献求助10
6秒前
NexusExplorer应助现代雁桃采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
思源应助叶子采纳,获得10
8秒前
冷酷的柜门完成签到,获得积分20
8秒前
科研通AI5应助悦耳的小夏采纳,获得10
9秒前
怿愀完成签到,获得积分10
10秒前
10秒前
挚zhi发布了新的文献求助10
10秒前
大气白翠完成签到,获得积分10
10秒前
一只王火火完成签到,获得积分10
11秒前
11秒前
认真子默发布了新的文献求助10
11秒前
roy_chiang完成签到,获得积分0
11秒前
酸奶辣条发布了新的文献求助10
12秒前
12秒前
小医小鱼完成签到,获得积分10
13秒前
ZZG完成签到,获得积分10
13秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790056
求助须知:如何正确求助?哪些是违规求助? 3334710
关于积分的说明 10271870
捐赠科研通 3051185
什么是DOI,文献DOI怎么找? 1674513
邀请新用户注册赠送积分活动 802634
科研通“疑难数据库(出版商)”最低求助积分说明 760828