A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

激光雷达 落叶松 环境科学 生物量(生态学) 森林资源清查 遥感 树(集合论) 林业 森林经营 农林复合经营 数学 地理 生态学 生物 数学分析
作者
Liming Du,Yong Pang,Qiang Wang,Chengquan Huang,Yu Bai,Dongsheng Chen,Wei Lu,Dan Kong
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:290: 113543-113543 被引量:34
标识
DOI:10.1016/j.rse.2023.113543
摘要

Spatially continuous mapping forest aboveground biomass (AGB) is crucial for better understanding the capacities of carbon sequestration capacities of forest ecosystems at both individual tree and landscape levels. Collecting field data is one of the most labor-intensive and time-consuming tasks in biomass mapping using airborne laser scanning (ALS) data. Building on a LiDAR biomass index (LBI) developed for use with terrestrial laser scanning (TLS) data, we successfully developed an improved and robust LBI-based approach to estimate forest AGB at both individual tree and plot levels while minimizing the effort required for field data collection. This approach was tested for larch, birch, and eucalyptus over three forest farms in Northeast China and one in Southern China. The results showed that LBI was highly correlated with the diameter, height, and AGB of larch trees. AGB estimates derived using LBI-based models for the three tree species were close to ground measurements at the individual tree level. They explained 81% to 95% of the variance of independent test data not used to calibrate those models. Tree level AGB estimates are required by many applications, but they could not be provided by commonly used plot-based biomass mapping approaches like LiDAR metrics-based regression (LMR) or Random Forest (RF). Calibrated with small fractions of the trees needed to calibrate LMR and RF models, LBI-based biomass models produced plot level biomass estimates comparable to or better than those produced using the two plot-based methods. More importantly, the LBI-based models generalized far better than LMR and RF among the three larch forest farms located hundreds of kilometers apart. These promising results warrant more research on the effectiveness of the LBI-based approach for other forest types and tree species not considered in this study. As LiDAR technology and related algorithms are evolving rapidly, further improvements to this approach might be feasible. A robust LBI-based approach applicable to a wide range of tree species and forest types across the globe will greatly facilitate the use of increasingly better and more affordable ALS data to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) and other forest-based climate mitigation initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yztz应助zhy采纳,获得30
3秒前
juju发布了新的文献求助10
4秒前
4秒前
dasfdufos发布了新的文献求助10
8秒前
祥辉NCU完成签到,获得积分10
11秒前
11秒前
CipherSage应助强健的冰旋采纳,获得10
14秒前
小粉完成签到,获得积分20
15秒前
123发布了新的文献求助10
18秒前
NexusExplorer应助dasfdufos采纳,获得10
19秒前
5321完成签到,获得积分10
20秒前
胜天半子完成签到,获得积分10
21秒前
小粉发布了新的文献求助30
23秒前
明亮元柏完成签到,获得积分20
23秒前
森林有木发布了新的文献求助10
24秒前
YC完成签到,获得积分10
24秒前
24秒前
笑笑完成签到 ,获得积分10
25秒前
Nancy发布了新的文献求助30
27秒前
泥娃娃完成签到,获得积分10
27秒前
32秒前
33秒前
123七八发布了新的文献求助10
36秒前
ada完成签到,获得积分20
37秒前
37秒前
友谊完成签到,获得积分10
38秒前
Bell发布了新的文献求助10
39秒前
ira发布了新的文献求助10
40秒前
天天快乐应助留胡子的涛采纳,获得10
41秒前
nylon完成签到,获得积分20
42秒前
xixi完成签到,获得积分10
42秒前
44秒前
桐桐应助清新的音响采纳,获得10
47秒前
南暮完成签到 ,获得积分10
49秒前
49秒前
李健的粉丝团团长应助Bell采纳,获得10
50秒前
Belinda发布了新的文献求助10
51秒前
xinC完成签到 ,获得积分10
52秒前
千空发布了新的文献求助10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366