A compound fault diagnosis model for gearboxes using correlation information between single faults

计算机科学 邻接矩阵 图形 模式识别(心理学) 断层(地质) 特征向量 数据挖掘 特征(语言学) 人工智能 节点(物理) 理论计算机科学 工程类 哲学 地震学 地质学 结构工程 语言学
作者
Ming Zeng,Hao Wang,Yiwei Cheng,Jianyu Wei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 036202-036202 被引量:7
标识
DOI:10.1088/1361-6501/ad1312
摘要

Abstract Gearboxes are key components of rotating machinery. Performing intelligent fault diagnosis of gearboxes with condition-based monitoring information helps to make reliable decisions on equipment operation and maintenance. Besides single faults, compound faults also are common failure forms of gearboxes. Conventional intelligent diagnosis models (known as single-label models) generally treat a compound fault as a new fault type, ignoring the correlations between the compound fault and the corresponding single faults. To overcome this problem, multi-label learning has been introduced and developed into multi-label models. It is also possible that different single faults are not independent but correlated with each other. Existing multi-label models, however, usually ignore this aspect. Therefore, exploiting the correlation information between single faults can further improve multi-label models. To this end, every single fault is treated as a label node , resulting in a label graph. The feature vector of each label node is initialized by the word embedding of the corresponding single-fault label. All the word embeddings are mapped using graph convolutional networks (GCN) into the parameter vectors of a set of interdependent binary linear classifiers that can directly perform multi-label classification on health categories. Meanwhile, the adjacency matrix of the label graph is adaptively learned by self-attention (SA) from node feature vectors. In this way, a novel multi-label model based on SA and GCN (referred to as SA-GCN) is proposed for compound fault diagnosis of gearboxes. SA-GCN mainly consists of a ResNet-based fault feature learning module, an SA-based adjacency matrix learning module, and a GCN-based multi-label classifier learning module. The application results on two gearbox cases show that SA-GCN outperforms conventional single-label models as well as state-of-the-art multi-label models in terms of both the diagnostic accuracy of compound faults and the overall diagnostic accuracy. Moreover, the effects of internal modules and hyperparameters on SA-GCN are also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的囧完成签到,获得积分10
1秒前
糊糊涂涂发布了新的文献求助10
2秒前
3秒前
4秒前
辛勤的囧发布了新的文献求助10
5秒前
7秒前
7秒前
小二郎应助aniu采纳,获得10
7秒前
别吃小米粥完成签到,获得积分10
8秒前
10秒前
Eva发布了新的文献求助20
10秒前
11秒前
12秒前
无限大山发布了新的文献求助10
12秒前
13秒前
14秒前
领导范儿应助雨之夏日采纳,获得200
14秒前
14秒前
汉堡包应助花凉采纳,获得10
14秒前
亿亿亿亿完成签到,获得积分10
15秒前
乐观小之应助wang采纳,获得10
16秒前
16秒前
松山少林学武功完成签到 ,获得积分10
16秒前
17秒前
研友_VZG7GZ应助Eva采纳,获得10
17秒前
18秒前
19秒前
发多多完成签到,获得积分10
20秒前
吱吱发布了新的文献求助10
20秒前
清梦发布了新的文献求助10
22秒前
帅小主完成签到,获得积分20
24秒前
angelinazh发布了新的文献求助10
26秒前
Ava应助安生采纳,获得10
28秒前
32秒前
daffodil发布了新的文献求助30
34秒前
兔兔跑路发布了新的文献求助20
34秒前
在水一方应助发多多采纳,获得10
35秒前
36秒前
wanci应助科研通管家采纳,获得100
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417