POI recommendation for random groups based on cooperative graph neural networks

计算机科学 人工神经网络 图形 人工智能 随机图 计算机网络 理论计算机科学
作者
Zhizhong Liu,Lingqiang Meng,Quan Z. Sheng,Dianhui Chu,Jian Yu,Xiaoyu Song
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103676-103676 被引量:23
标识
DOI:10.1016/j.ipm.2024.103676
摘要

Group Point-of-Interests (POI) recommendation devotes to find the optimal POIs for groups, which has extracted extensive attention. This work first brings forward a novel POI recommendation model for random groups based on Cooperative Graph Neural Networks (named as CGNN-PRRG). We have done three innovative work. (1) We propose a new fitted presentation learning method for generating the fitted representations of random groups. (2) To conquer the cold start issues in recommending POI for a new random group, we propose to take similar users’ (which have the similar representations with that of the random group) POI interaction data as the learning data. (3) We propose an Edge-learning enhanced Bipartite Graph Neural Network (EBGNN) to learn similar users’ POI comprehensive interaction preferences. Specially, EBGNN can learn the information on the edges of the graph. Meanwhile, we propose to learn similar users’ POI transfer preferences with the Session-based Graph Neural Networks (SRGNN). We verify our proposed model on the three public benchmark datasets (Foursquare, Gowalla and Yelp), which contain 124,933 to 860,888 POI check-in records. The comparison between our proposed model and ten representative baseline models demonstrates the outstanding performance of CGNN-PRRG. In terms of Precision@K and NDCG@K, our model achieves about 24.9% and 62.5% improvement compared with the best baseline models on the three benchmark datasets averagely. Adequate ablation experiments prove the effectiveness of the fitted representation generation method, similar users’ POI comprehensive interaction preferences learning method and the method for overcoming the cold start problem. The source code of the CGNN-PRRG model is available on github1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nVNBVn发布了新的文献求助10
1秒前
Li猪猪发布了新的文献求助10
2秒前
2秒前
YueYue发布了新的文献求助10
2秒前
愉快竺完成签到 ,获得积分10
2秒前
3秒前
小蘑菇应助yuanyuan采纳,获得10
3秒前
南湖渔翁发布了新的文献求助10
3秒前
3秒前
4秒前
fx发布了新的文献求助10
4秒前
Hello应助姚友进采纳,获得10
5秒前
lvy完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
忧郁的火车完成签到,获得积分10
6秒前
丶Dawn发布了新的文献求助20
7秒前
Fire完成签到,获得积分10
7秒前
小黄鸭发布了新的文献求助10
7秒前
大钊完成签到,获得积分10
8秒前
兔子发布了新的文献求助10
8秒前
8秒前
FashionBoy应助研友_nVNBVn采纳,获得10
8秒前
Shawn完成签到,获得积分10
8秒前
8秒前
9秒前
心心长点心完成签到,获得积分10
9秒前
9秒前
xyyt发布了新的文献求助10
9秒前
子清完成签到,获得积分10
9秒前
Xiwen321完成签到,获得积分20
9秒前
没心情Q发布了新的文献求助10
9秒前
Orange应助俏皮的康采纳,获得10
10秒前
10秒前
wanci应助寒江孤影采纳,获得10
10秒前
枫之林完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助温暖白凡采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319840
求助须知:如何正确求助?哪些是违规求助? 4461732
关于积分的说明 13884549
捐赠科研通 4352459
什么是DOI,文献DOI怎么找? 2390587
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354111