清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adapting Deep Learning QSPR Models to Specific Drug Discovery Projects

广告 化学空间 药物发现 杠杆(统计) 计算机科学 机器学习 化学信息学 人工智能 生化工程 化学 生物信息学 工程类 计算化学 药代动力学 生物
作者
Andrin Fluetsch,Elena Di Lascio,Grégori Gerebtzoff,Raquel Rodríguez-Pérez
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:21 (4): 1817-1826 被引量:13
标识
DOI:10.1021/acs.molpharmaceut.3c01124
摘要

Medicinal chemistry and drug design efforts can be assisted by machine learning (ML) models that relate the molecular structure to compound properties. Such quantitative structure-property relationship models are generally trained on large data sets that include diverse chemical series (global models). In the pharmaceutical industry, these ML global models are available across discovery projects as an "out-of-the-box" solution to assist in drug design, synthesis prioritization, and experiment selection. However, drug discovery projects typically focus on confined parts of the chemical space (e.g., chemical series), where global models might not be applicable. Local ML models are sometimes generated to focus on specific projects or series. Herein, ML-based global models, local models, and hybrid global-local strategies were benchmarked. Analyses were done for more than 300 drug discovery projects at Novartis and ten absorption, distribution, metabolism, and excretion (ADME) assays. In this work, hybrid global-local strategies based on transfer learning approaches were proposed to leverage both historical ADME data (global) and project-specific data (local) to adapt model predictions. Fine-tuning a pretrained global ML model (used for weights' initialization, WI) was the top-performing method. Average improvements of mean absolute errors across all assays were 16% and 27% compared with global and local models, respectively. Interestingly, when the effect of training set size was analyzed, WI fine-tuning was found to be successful even in low-data scenarios (e.g., ∼10 molecules per project). Taken together, this work highlights the potential of domain adaptation in the field of molecular property predictions to refine existing pretrained models on a new compound data distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
一天完成签到 ,获得积分10
3秒前
4秒前
单小芫完成签到 ,获得积分10
22秒前
领导范儿应助无情的琳采纳,获得10
32秒前
婉莹完成签到 ,获得积分0
35秒前
prawn218完成签到,获得积分10
38秒前
滕皓轩完成签到 ,获得积分20
41秒前
马成双完成签到 ,获得积分10
45秒前
Sendoh完成签到,获得积分10
45秒前
59秒前
1分钟前
woxinyouyou完成签到,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
无情的琳发布了新的文献求助10
1分钟前
merilynht完成签到,获得积分10
1分钟前
1分钟前
周娅敏发布了新的文献求助10
1分钟前
2分钟前
2分钟前
无情的琳发布了新的文献求助10
2分钟前
trophozoite完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
务实的初蝶完成签到 ,获得积分10
2分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
周娅敏完成签到,获得积分10
3分钟前
maitiandehe发布了新的文献求助10
3分钟前
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
哈哈哈发布了新的文献求助10
3分钟前
默默问芙完成签到,获得积分10
3分钟前
哈哈哈完成签到,获得积分10
3分钟前
sponge完成签到 ,获得积分10
3分钟前
无情的琳发布了新的文献求助10
3分钟前
4分钟前
小马甲应助monkeytong1采纳,获得10
4分钟前
菠萝包完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724352
求助须知:如何正确求助?哪些是违规求助? 5287166
关于积分的说明 15299806
捐赠科研通 4872278
什么是DOI,文献DOI怎么找? 2616834
邀请新用户注册赠送积分活动 1566685
关于科研通互助平台的介绍 1523620