A Water Environment-Based Simulated Method for Ultrasonic Testing of Slag Inclusion Weld Defects Based on Improved VMD

超声波传感器 超声波检测 包裹体(矿物) 焊接 熔渣(焊接) 材料科学 冶金 复合材料 声学 矿物学 化学 物理
作者
J Zhang,Guocai Zhang,Zijie Chen,Hailin Zou,Shuai Xue,Jianjie Deng,Jianqing Li
出处
期刊:Sensors [MDPI AG]
卷期号:24 (13): 4199-4199 被引量:1
标识
DOI:10.3390/s24134199
摘要

The identification of slag inclusion defects in welds is of the utmost importance in guaranteeing the integrity, safety, and prolonged service life of welded structures. Most research focuses on different kinds of weld defects, but branch research on categories of slag inclusion material is limited and critical for safeguarding the quality of engineering and the well-being of personnel. To address this issue, we design a simulated method using ultrasonic testing to identify the inclusion of material categories in austenitic stainless steel. It is based on a simulated experiment in a water environment, and six categories of cubic specimens, including four metallic and two non-metallic materials, are selected to simulate the slag materials of the inclusion defects. Variational mode decomposition optimized by particle swarm optimization is employed for ultrasonic signals denoising. Moreover, the phase spectrum of the denoised signal is utilized to extract the phase characteristic of the echo signal from the water–slag specimen interface. The experimental results show that our method has the characteristics of appropriate decomposition and good denoising performance. Compared with famous signal denoising algorithms, the proposed method extracted the lowest number of intrinsic mode functions from the echo signal with the highest signal-to-noise ratio and lowest normalized cross-correlation among all of the comparative algorithms in signal denoising of weld slag inclusion defects. Finally, the phase spectrum can ascertain whether the slag inclusion is a thicker or thinner medium compared with the weld base material based on the half-wave loss existing or not in the echo signal phase.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27发布了新的文献求助10
1秒前
柳树完成签到,获得积分20
1秒前
cindy完成签到,获得积分10
2秒前
自信白凡完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
cindy发布了新的文献求助10
5秒前
6秒前
ziyue完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
ralph_liu完成签到,获得积分10
8秒前
柳树发布了新的文献求助10
8秒前
8秒前
8秒前
lipppfff完成签到,获得积分10
9秒前
9秒前
海子啊完成签到,获得积分10
10秒前
姚姚姚发布了新的文献求助10
11秒前
大模型应助123采纳,获得10
11秒前
12秒前
12秒前
懿懿发布了新的文献求助10
12秒前
12秒前
yyh发布了新的文献求助10
13秒前
shine完成签到,获得积分10
13秒前
Lucas应助糟糕的便当采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
XP完成签到 ,获得积分10
16秒前
泡芙完成签到,获得积分10
16秒前
17秒前
18秒前
shine发布了新的文献求助30
18秒前
文文完成签到 ,获得积分10
19秒前
conanyangqun完成签到,获得积分0
20秒前
李昕123完成签到 ,获得积分10
20秒前
犹豫的诗珊完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5672966
求助须知:如何正确求助?哪些是违规求助? 4930222
关于积分的说明 15142739
捐赠科研通 4832231
什么是DOI,文献DOI怎么找? 2587989
邀请新用户注册赠送积分活动 1541778
关于科研通互助平台的介绍 1499936