Identification of novel biomarkers and drug targets for frailty-related skeletal muscle aging: a multi-omics study

生物标志物 转录组 骨骼肌 计算生物学 生物标志物发现 生物信息学 医学 生物 蛋白质组学 基因 基因表达 内科学 遗传学
作者
Qijun Wang,Xuan Zhao,Wei Wang,Xiaolong Chen,Shibao Lu
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
标识
DOI:10.1093/qjmed/hcaf108
摘要

Abstract Background Skeletal muscle aging is the major cause and hallmark of frailty, which poses a significant challenge to the healthcare system. Aim This study aimed to identify the potential biomarkers for the early detection and therapeutic intervention of this age-related condition. Methods A transcriptomics-based methodology using machine learning algorithms was performed to select the biomarker genes. A predictive machine learning model for (pre-)frailty based on the transcriptomic profile of the biomarker genes was constructed and validated. The cell-type specific changes of the biomarkers during muscle aging were investigated in a single-cell RNA sequencing dataset of human skeletal muscle. Summary data-based Mendelian randomization (SMR) and Bayesian colocalization analyses were performed to identify biomarker genes with therapeutic effects on frailty-related skeletal muscle aging, and drug candidates were explored in the DSigDB database. Results We identified 24 biomarker genes, most of which were discovered for the first time. The optimal predictive model showed excellent performance in the external test set. Differential expression of the biomarkers in the single-cell dataset indicated a critical role of endothelial cells modulated by the marker genes MGP and ID1 in muscle degeneration. The SMR and colocalization analyses showed causal relationships between 2 marker genes (MGP and WAC) and frailty-related muscle aging. Potential therapeutics for MGP modulation were identified in the DSigDB database. Conclusions This multi-omics study identified biomarkers associated with frailty-related muscle aging and provided new insights into the etiology and therapeutic targets for this age-related condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LWJ发布了新的文献求助10
1秒前
Will完成签到,获得积分10
1秒前
科研通AI5应助hefang采纳,获得10
3秒前
5秒前
ceicic发布了新的文献求助10
5秒前
隐形曼青应助111采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
勤奋隶应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
l玖应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
coolkid应助科研通管家采纳,获得10
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
ying完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
wengly完成签到,获得积分20
8秒前
9秒前
OuO完成签到,获得积分10
10秒前
10秒前
dawd完成签到,获得积分10
10秒前
11秒前
11秒前
予秋发布了新的文献求助10
12秒前
cc发布了新的文献求助10
13秒前
聪明凌柏完成签到 ,获得积分10
14秒前
秀丽笑容完成签到 ,获得积分10
14秒前
KK完成签到,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845874
求助须知:如何正确求助?哪些是违规求助? 3388228
关于积分的说明 10552145
捐赠科研通 3108835
什么是DOI,文献DOI怎么找? 1713137
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927