Identification of novel biomarkers and drug targets for frailty-related skeletal muscle aging: a multi-omics study

生物标志物 转录组 骨骼肌 计算生物学 生物标志物发现 生物信息学 医学 生物 蛋白质组学 基因 基因表达 内科学 遗传学
作者
Qijun Wang,Xuan Zhao,Wei Wang,Xiaolong Chen,Shibao Lu
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
标识
DOI:10.1093/qjmed/hcaf108
摘要

Abstract Background Skeletal muscle aging is the major cause and hallmark of frailty, which poses a significant challenge to the healthcare system. Aim This study aimed to identify the potential biomarkers for the early detection and therapeutic intervention of this age-related condition. Methods A transcriptomics-based methodology using machine learning algorithms was performed to select the biomarker genes. A predictive machine learning model for (pre-)frailty based on the transcriptomic profile of the biomarker genes was constructed and validated. The cell-type specific changes of the biomarkers during muscle aging were investigated in a single-cell RNA sequencing dataset of human skeletal muscle. Summary data-based Mendelian randomization (SMR) and Bayesian colocalization analyses were performed to identify biomarker genes with therapeutic effects on frailty-related skeletal muscle aging, and drug candidates were explored in the DSigDB database. Results We identified 24 biomarker genes, most of which were discovered for the first time. The optimal predictive model showed excellent performance in the external test set. Differential expression of the biomarkers in the single-cell dataset indicated a critical role of endothelial cells modulated by the marker genes MGP and ID1 in muscle degeneration. The SMR and colocalization analyses showed causal relationships between 2 marker genes (MGP and WAC) and frailty-related muscle aging. Potential therapeutics for MGP modulation were identified in the DSigDB database. Conclusions This multi-omics study identified biomarkers associated with frailty-related muscle aging and provided new insights into the etiology and therapeutic targets for this age-related condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无恙29发布了新的文献求助10
刚刚
刚刚
8R60d8应助没吃饭采纳,获得40
3秒前
球球发布了新的文献求助10
4秒前
5秒前
6秒前
vobin完成签到,获得积分10
7秒前
端庄仰完成签到,获得积分10
8秒前
22发布了新的文献求助20
8秒前
Nobita发布了新的文献求助10
9秒前
善学以致用应助小马过河采纳,获得10
10秒前
吉__驳回了Lucas应助
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
LIUXU完成签到,获得积分10
12秒前
14秒前
yanan完成签到,获得积分10
14秒前
TL111完成签到,获得积分20
14秒前
符百川发布了新的文献求助10
15秒前
15秒前
东木应助健忘的冰淇淋采纳,获得20
15秒前
七七完成签到,获得积分10
16秒前
16秒前
16秒前
senlin发布了新的文献求助10
17秒前
17秒前
搜集达人应助球球采纳,获得10
17秒前
HAL应助张宁采纳,获得10
17秒前
安益平完成签到,获得积分10
18秒前
Zoe_Zhang发布了新的文献求助10
18秒前
Jasper应助Nobita采纳,获得10
18秒前
Cker完成签到,获得积分10
19秒前
zhnf1179完成签到,获得积分10
21秒前
EvanBee发布了新的文献求助10
21秒前
LYegoist完成签到,获得积分10
22秒前
丫丫发布了新的文献求助10
22秒前
june应助锅锅采纳,获得10
23秒前
23秒前
沉默凌寒完成签到,获得积分10
23秒前
8R60d8应助Daisy采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245699
求助须知:如何正确求助?哪些是违规求助? 3778908
关于积分的说明 11864234
捐赠科研通 3432702
什么是DOI,文献DOI怎么找? 1883835
邀请新用户注册赠送积分活动 935389
科研通“疑难数据库(出版商)”最低求助积分说明 841899