极限环
哈密顿系统
极限(数学)
数学
哈密顿量(控制论)
订单(交换)
控制理论(社会学)
分叉
统计物理学
物理
数学分析
数学物理
非线性系统
计算机科学
数学优化
量子力学
经济
控制(管理)
财务
人工智能
作者
Xingang Wang,Hongjun Cao
标识
DOI:10.1142/s0218127425501044
摘要
The bifurcation of limit cycles is investigated from asymmetric cubic Hamiltonian systems under the perturbation of five-order polynomials. The approach applies Green’s theorem to the method of detection function: First, the Abelian integrals with irregular regions are computed, improving the accuracy of bifurcation parameter values. Second, it is shown that there exist at least 11 limit cycles with two distinct distributions. Third, precise detection curves are presented to validate all analytical results. Finally, four cases are investigated for the number and distribution of limit cycles by considering Hopf, heteroclinic, and homoclinic bifurcation values to obtain parameter conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI