Lesion classification by model-based feature extraction: A differential affine invariant model of soft tissue elasticity

弹性(物理) 仿射变换 弹性成像 特征提取 人工智能 模式识别(心理学) 接收机工作特性 计算机科学 病变 数学 超声波 放射科 医学 病理 物理 几何学 机器学习 热力学
作者
Weiguo Cao,Marc J. Pomeroy,Zhengrong Liang,Yongfeng Gao,Yongyi Shi,Jiaxing Tan,Fangfang Han,Jing Wang,Jianhua Ma,Hongbin Lu,Almas F. Abbasi,Perry J. Pickhardt
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2205.14029
摘要

The elasticity of soft tissues has been widely considered as a characteristic property to differentiate between healthy and vicious tissues and, therefore, motivated several elasticity imaging modalities, such as Ultrasound Elastography, Magnetic Resonance Elastography, and Optical Coherence Elastography. This paper proposes an alternative approach of modeling the elasticity using Computed Tomography (CT) imaging modality for model-based feature extraction machine learning (ML) differentiation of lesions. The model describes a dynamic non-rigid (or elastic) deformation in differential manifold to mimic the soft tissues elasticity under wave fluctuation in vivo. Based on the model, three local deformation invariants are constructed by two tensors defined by the first and second order derivatives from the CT images and used to generate elastic feature maps after normalization via a novel signal suppression method. The model-based elastic image features are extracted from the feature maps and fed to machine learning to perform lesion classifications. Two pathologically proven image datasets of colon polyps (44 malignant and 43 benign) and lung nodules (46 malignant and 20 benign) were used to evaluate the proposed model-based lesion classification. The outcomes of this modeling approach reached the score of area under the curve of the receiver operating characteristics of 94.2 % for the polyps and 87.4 % for the nodules, resulting in an average gain of 5 % to 30 % over ten existing state-of-the-art lesion classification methods. The gains by modeling tissue elasticity for ML differentiation of lesions are striking, indicating the great potential of exploring the modeling strategy to other tissue properties for ML differentiation of lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助CNX采纳,获得30
刚刚
子车茗应助shuozhang采纳,获得30
刚刚
猪八戒完成签到,获得积分20
刚刚
核桃发布了新的文献求助30
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
XYNW发布了新的文献求助10
2秒前
2秒前
WANGJD发布了新的文献求助10
2秒前
田様应助郭濹涵采纳,获得10
2秒前
活力初蝶完成签到,获得积分20
3秒前
猪八戒发布了新的文献求助10
3秒前
qiuyang完成签到,获得积分10
4秒前
4秒前
甜蜜的盼望完成签到,获得积分10
4秒前
chr完成签到,获得积分10
4秒前
爆米花应助林黛玉采纳,获得10
5秒前
5秒前
maomao应助walk采纳,获得10
5秒前
6秒前
聪明的豆沙卷完成签到,获得积分10
6秒前
6秒前
7秒前
lutra完成签到,获得积分10
7秒前
Jovid发布了新的文献求助10
8秒前
甜美野牛发布了新的文献求助10
8秒前
老实凝蕊发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
小白完成签到,获得积分10
10秒前
小蘑菇应助shinn采纳,获得10
10秒前
10秒前
Pendulium发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
越来越没意思了完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777042
求助须知:如何正确求助?哪些是违规求助? 5631733
关于积分的说明 15444711
捐赠科研通 4909020
什么是DOI,文献DOI怎么找? 2641568
邀请新用户注册赠送积分活动 1589539
关于科研通互助平台的介绍 1544019