清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning automation of MEST-C classification in IgA nephropathy

医学 队列 卡帕 内科学 肾病 移植 危险系数 肌酐 接收机工作特性 人工智能 肾移植 糖尿病 计算机科学 置信区间 哲学 语言学 内分泌学
作者
Adrien Jaugey,Elise Maréchal,Georges Tarris,Michel Paindavoine,Laurent Martin,Melchior Chabannes,Mathilde Funes de la Vega,Mélanie Chaintreuil,Coline Robier,Didier Ducloux,Thomas Crépin,Sophie Félix,Amélie Jacq,Doris Calmo,Claire Tinel,Gilbert Zanetta,Jean-Michel Rebibou,Mathieu Legendre
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (7): 1741-1751 被引量:14
标识
DOI:10.1093/ndt/gfad039
摘要

ABSTRACT Background Although the MEST-C classification is among the best prognostic tools in immunoglobulin A nephropathy (IgAN), it has a wide interobserver variability between specialized pathologists and others. Therefore we trained and evaluated a tool using a neural network to automate the MEST-C grading. Methods Biopsies of patients with IgAN were divided into three independent groups: the Training cohort (n = 42) to train the network, the Test cohort (n = 66) to compare its pixel segmentation to that made by pathologists and the Application cohort (n = 88) to compare the MEST-C scores computed by the network or by pathologists. Results In the Test cohort, >73% of pixels were correctly identified by the network as M, E, S or C. In the Application cohort, the neural network area under the receiver operating characteristics curves were 0.88, 0.91, 0.88, 0.94, 0.96, 0.96 and 0.92 to predict M1, E1, S1, T1, T2, C1 and C2, respectively. The kappa coefficients between pathologists and the network assessments were substantial for E, S, T and C scores (kappa scores of 0.68, 0.79, 0.73 and 0.70, respectively) and moderate for M score (kappa score of 0.52). Network S and T scores were associated with the occurrence of the composite survival endpoint (death, dialysis, transplantation or doubling of serum creatinine) [hazard ratios 9.67 (P = .006) and 7.67 (P < .001), respectively]. Conclusions This work highlights the possibility of automated recognition and quantification of each element of the MEST-C classification using deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
shhoing应助科研通管家采纳,获得10
17秒前
xun完成签到,获得积分20
26秒前
黄天完成签到 ,获得积分10
1分钟前
乐乐应助紫津采纳,获得10
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
紫津完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得40
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
3分钟前
健忘的溪灵完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
科研通AI6应助岚月采纳,获得30
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得30
6分钟前
岚月发布了新的文献求助30
6分钟前
岚月完成签到,获得积分10
6分钟前
糊涂的青烟完成签到 ,获得积分10
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
感动初蓝完成签到 ,获得积分10
9分钟前
tt完成签到,获得积分10
9分钟前
大鸟依人发布了新的文献求助10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
orixero应助大鸟依人采纳,获得10
11分钟前
cao_bq完成签到,获得积分10
11分钟前
积雪完成签到 ,获得积分10
11分钟前
yang完成签到 ,获得积分10
11分钟前
cao_bq发布了新的文献求助10
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678727
捐赠科研通 4587989
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461566