Real-time actuation of a dielectric elastomer actuator neuroprosthesis for facial paralysis

面部肌肉 执行机构 计算机科学 接口(物质) 面瘫 脑-机接口 信号(编程语言) 人工智能 医学 外科 脑电图 气泡 并行计算 程序设计语言 最大气泡压力法 精神科 解剖
作者
Stefania Konstantinidi,Carlotta Imholz,Thomas Martinez,Amine Benouhiba,Armando Walter,Yoan Civet,Nicole Lindenblatt,Yves Perriard
出处
期刊:Smart materials in medicine [Elsevier]
卷期号:5 (1): 15-23 被引量:12
标识
DOI:10.1016/j.smaim.2023.06.003
摘要

Facial paralysis is a highly burdening condition, resulting in a patient's inability to move his mimic musculature on one or both sides of his face. This condition compromises the patient's communication and facial expressions, and thus dramatically reduces his quality of life. The current treatment for chronic facial paralysis relies on a complex reconstructive surgery. This publication proposes a novel, less invasive approach for dynamic facial reanimation. The use of a smart material, namely a Dielectric Elastomer Actuator (DEA) is proposed for facial motion restoration, thus avoiding the traditional two-stage free muscle transfer procedure and allowing for a faster recovery of the patient. DEAs are a type of electroactive polymers, showing promising properties similar to natural muscles such as the fact that they are soft, lightweight and allow for large displacements. As a result, a study of the facial muscles and neural interfaces, notably the ones responsible for mouth movement, was performed, in order to implement a realistic setup. In this paper, a non-invasive neural interface based on myoelectric signal is used in order to establish a real-time control of the actuator. Visible motion of a skin model is produced in real time, by synchronizing the actuator to the activity of a healthy muscle, with a maximal delay of 108 ms resulting from the signal processing and a delay of less than 30 ms related to the actuation of the DEA. This shows that the usage of DEA combined with a neural interface presents a promising approach for treatment of facial paralysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daisy完成签到,获得积分10
1秒前
2秒前
Hello应助zhuangxx采纳,获得10
3秒前
3秒前
WQB完成签到,获得积分10
5秒前
蔓越莓完成签到 ,获得积分10
6秒前
智勇双全完成签到,获得积分10
6秒前
7秒前
大水牛姐姐完成签到,获得积分10
7秒前
8秒前
9秒前
英姑应助hchnb1234采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助50
10秒前
11秒前
科研通AI2S应助ChemMa采纳,获得10
12秒前
13秒前
14秒前
14秒前
14秒前
16秒前
一颗杨梅发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
小透明发布了新的文献求助10
17秒前
大个应助chenille采纳,获得10
18秒前
茉莉花发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助50
22秒前
23秒前
cjmlslddjd完成签到,获得积分10
23秒前
14岁啦发布了新的文献求助10
23秒前
California发布了新的文献求助10
23秒前
ChemMa发布了新的文献求助10
24秒前
Criminology34应助ryt采纳,获得10
24秒前
renxu发布了新的文献求助10
24秒前
传奇3应助白小飞采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432