mTORC1型
安普克
细胞生长
生物
细胞生物学
PI3K/AKT/mTOR通路
基因沉默
蛋白激酶A
ATF4
信号转导
转录因子
化学
激酶
生物化学
基因
作者
Wei Yu,Jinqi Guo,Lei Mao,Qingzhu Wang,Yuanyuan Liu,Dong Xu,Jiage Ma,Chaochao Luo
标识
DOI:10.1080/10495398.2023.2228847
摘要
In the dairy industry, glucose (Glu) is used as bioactive substance to increase milk yield. However, the molecular regulation underneath needs further clarification. Here, the regulation and its molecular mechanism of Glu on cell growth and casein synthesis of dairy cow mammary epithelial cells (DCMECs) were investigated. When Glu was added from DCMECs, both cell growth, β-casein expression and the mechanistic target of rapamycin complex 1 (mTORC1) pathway were increased. Overexpression and silencing of mTOR revealed that Glu promoted cell growth and β-casein expression through the mTORC1 pathway. When Glu was added from DCMECs, both Adenosine 5'-monophosphate-activated protein kinase α (AMPKα) and Sestrin2 (SESN2) expression were decreased. Overexpression and silencing of AMPKα or SESN2 uncovered that AMPKα suppressed cell growth and β-casein synthesis through inhibiting mTORC1 pathway, and SESN2 suppressed cell growth and β-casein synthesis through activating AMPK pathway. When Glu was depleted from DCMECs, both activating transcription factor 4 (ATF4) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression were increased. Overexpression or silencing of ATF4 or Nrf2 demonstrated that Glu depletion promoted SESN2 expression through ATF4 and Nrf2. Together, these results indicate that in DCMECs, Glu promoted cell growth and casein synthesis via ATF4/Nrf2-SESN2-AMPK-mTORC1 pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI