FTMF-Net: A Fourier Transform-Multiscale Feature Fusion Network for Segmentation of Small Polyp Objects

人工智能 计算机科学 模式识别(心理学) 分割 特征(语言学) 图像分割 背景(考古学) 特征提取 卷积神经网络 计算机视觉 傅里叶变换 数学 哲学 古生物学 数学分析 生物 语言学
作者
Guoqi Liu,Zongyu Chen,Dong Liu,Baofang Chang,Zhi Dou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:13
标识
DOI:10.1109/tim.2023.3293880
摘要

The detection and resection of small polyp objects in colonoscopy images is of great significance for the prevention of colorectal cancer. At present, blurred edges, variable lesion shapes, and intra-class dissimilarity pose challenges for accurately segmenting small polyp objects. In recent years, many deep learning methods based on convolutional neural networks (CNNs) have been proposed and successfully applied to polyp segmentation tasks. However, these methods still have two limitations: (1) Limited ability to mine boundary detail information, (2) Insufficient ability to capture rich global context information, and (3) Introduced additional complex feature extraction operations. To alleviate these challenges, we propose a Fourier transform-multiscale feature fusion network (FTMF-Net) for segmentation of small polyp objects. The core idea includes two points: (1) Fourier transform module extracts more detailed boundary information, and (2) Multiscale feature fusion module enriches global semantic feature information. FTMF-Net mainly has the following advantages: (1) The proposed model has excellent performance for small polyp object segmentation, (2) This method greatly reduces the complexity of the model without significantly increasing the number of network parameters, and (3) The network is relatively simple and easy to understand. Extensive experiments with eleven state-of-the-art (SOTA) methods on five small polyp object datasets show that our proposed FTMF-Net has superior segmentation performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
选华发布了新的文献求助10
刚刚
刚刚
轩ou发布了新的文献求助10
刚刚
黎明森发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
香蕉觅云应助社会小牛马采纳,获得10
2秒前
tantan发布了新的文献求助30
3秒前
3秒前
5秒前
7秒前
7秒前
飘零枫叶完成签到,获得积分10
8秒前
8秒前
ttt完成签到,获得积分10
8秒前
鲤鱼谷秋发布了新的文献求助10
10秒前
10秒前
木圭发布了新的文献求助10
11秒前
慕青应助轩ou采纳,获得10
11秒前
时冬冬发布了新的文献求助10
12秒前
13秒前
y13333发布了新的文献求助10
13秒前
15秒前
15秒前
gq100520发布了新的文献求助10
16秒前
17秒前
Owen应助微笑语山采纳,获得10
18秒前
19秒前
乐乐应助Mr采纳,获得10
19秒前
19秒前
汉堡包应助机智的南烟采纳,获得10
19秒前
甜甜发布了新的文献求助10
20秒前
大壮完成签到,获得积分10
20秒前
21秒前
21秒前
大胆隶完成签到 ,获得积分10
21秒前
慕青应助邵洋采纳,获得10
21秒前
21秒前
22秒前
24秒前
机灵道罡发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541501
求助须知:如何正确求助?哪些是违规求助? 4627967
关于积分的说明 14605912
捐赠科研通 4569037
什么是DOI,文献DOI怎么找? 2504952
邀请新用户注册赠送积分活动 1482433
关于科研通互助平台的介绍 1453941