Robust-DefReg: A Robust Coarse to Fine Non-rigid Point Cloud Registration Method based on Graph Convolutional Neural Networks

点云 卷积神经网络 计算机科学 人工智能 图形 云计算 模式识别(心理学) 算法 理论计算机科学 操作系统
作者
Sara Monji-Azad,Marvin Kinz,David Männel,Claudia Scherl,Jürgen Hesser
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015426-015426 被引量:1
标识
DOI:10.1088/1361-6501/ad916c
摘要

Abstract Point cloud registration is a critical process in computer vision and measurement science, aimed at determining transformations between corresponding sets of points for accurate spatial alignment. In particular, non-rigid registration involves estimating flexible transformations that map a source point cloud to a target point cloud, even under conditions of stretching, compression, or other complex deformations. This task becomes especially challenging when addressing measurement-specific issues like varying degrees of deformation, noise, and outliers, all of which can impact measurement accuracy and reliability. This paper introduces Robust-DefReg, a novel method for non-rigid point cloud registration that applies graph convolutional networks (GCNNs) within a coarse-to-fine registration framework. This end-to-end pipeline harnesses global feature learning to establish robust correspondences and precise transformations, enabling high accuracy across different deformation scales and noise levels. A key contribution of Robust-DefReg is its demonstrated resilience to various challenges, such as substantial deformations, noise, and outliers, factors often underreported in existing registration literature. In addition, we present SynBench, a comprehensive benchmark dataset specifically designed for evaluating non-rigid point cloud registration in realistic measurement scenarios. Unlike previous datasets, SynBench incorporates a range of challenges, making it a valuable tool for the fair assessment of registration methods in measurement applications. Experimental results on SynBench and additional datasets show that Robust-DefReg consistently outperforms state-of-the-art methods, offering higher registration accuracy and robustness, even with up to 45% outliers. SynBench and the Robust-DefReg source code are publicly accessible for further research and development at https://doi.org/10.11588/data/R9IKCF and https://github.com/m-kinz/Robust-DefReg , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇如天完成签到,获得积分10
刚刚
微笑的天抒完成签到,获得积分10
刚刚
1秒前
MAVS完成签到,获得积分10
1秒前
薄饼哥丶发布了新的文献求助10
3秒前
3秒前
Fingerprints完成签到 ,获得积分10
3秒前
simon8052发布了新的文献求助10
5秒前
5秒前
木尧关注了科研通微信公众号
6秒前
8秒前
薄饼哥丶完成签到,获得积分10
8秒前
9秒前
快乐学习每一天完成签到 ,获得积分10
9秒前
浮游应助林泽华采纳,获得30
10秒前
百里幻翠完成签到,获得积分10
10秒前
小南孩完成签到,获得积分10
10秒前
念念爱学习关注了科研通微信公众号
11秒前
所所应助小巧的以南采纳,获得10
11秒前
文艺的青旋完成签到 ,获得积分10
11秒前
快乐的忆安完成签到,获得积分10
12秒前
12秒前
zsyhcl发布了新的文献求助10
12秒前
13秒前
。。完成签到 ,获得积分10
15秒前
Swii完成签到,获得积分10
15秒前
瓜瓜发布了新的文献求助10
15秒前
15秒前
wjw完成签到,获得积分10
16秒前
16秒前
不知名网友要某某完成签到 ,获得积分20
16秒前
难过的谷芹应助秋子david采纳,获得10
17秒前
17秒前
kmzzy完成签到,获得积分10
17秒前
孟严青发布了新的文献求助10
18秒前
19秒前
hbhbj完成签到,获得积分10
20秒前
顾冷安完成签到,获得积分10
20秒前
Mian完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305118
求助须知:如何正确求助?哪些是违规求助? 4451329
关于积分的说明 13851608
捐赠科研通 4338651
什么是DOI,文献DOI怎么找? 2382080
邀请新用户注册赠送积分活动 1377214
关于科研通互助平台的介绍 1344592