Exploring the potential of large language models (LLMs) in analyzing passengers’ perceptions of transit service quality

感知 过境(卫星) 质量(理念) 服务质量 运输工程 服务(商务) 业务 营销 公共交通 心理学 工程类 哲学 认识论 神经科学
作者
Shuli Luo,Sylvia Y. He,Linqi Song,Sisi Jian,Yepeng Yao
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:53 (1): 90-106
标识
DOI:10.1177/23998083251382840
摘要

Public transit systems are essential to urban mobility, serving millions of daily commuters. To develop a more responsive, equitable, and efficient public transportation system, it is crucial for transportation planners and policymakers to gain a comprehensive understanding of the diverse travel experiences of transit users. Social media platforms offer valuable, continuous feedback, enabling transit providers to identify issues, make real-time adjustments, and plan long-term improvements. Recently, large language models (LLMs) have attracted significant attention in the urban planning field due to their exceptional performance in natural language processing (NLP) tasks. Using a Weibo dataset related to the Shenzhen metro system (2018–2019) in China, this study developed a two-stage analysis framework to evaluate LLMs’ capabilities in transit service management acting as customer experience analyst and transport planner respectively. We employed LLMs including GPT-3.5 and GPT-4o, utilizing zero-shot, few-shot, and chain-of-thought prompting techniques. Our findings demonstrate that LLMs consistently excel in the classification task and the policy recommendation task when benchmarked against the traditional Bag of Words (BOW) model. The systematic error analysis revealed three types of hallucinations: overthinking, contextual reasoning error, and ambiguity error. Despite these challenges, this research underscores the potential of LLMs in enhancing transit service quality assessment and emphasizes the importance of domain-specific expert rationale in designing prompts and interpreting results. Our study provides valuable insights for transportation planners aiming to leverage advanced NLP techniques for more responsive and data-driven service improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静青发布了新的文献求助10
刚刚
1秒前
1秒前
雪雪完成签到,获得积分10
1秒前
1秒前
1秒前
海绵发布了新的文献求助10
2秒前
3秒前
3秒前
wangli发布了新的文献求助10
4秒前
冷傲迎梦发布了新的文献求助10
4秒前
花开的声音1217完成签到,获得积分10
5秒前
年把月拥有完成签到,获得积分10
5秒前
5秒前
赵景月完成签到,获得积分10
5秒前
5秒前
5秒前
CodeCraft应助nemo采纳,获得10
6秒前
务觅发布了新的文献求助10
6秒前
汉堡包应助小于采纳,获得10
6秒前
雪雪发布了新的文献求助10
7秒前
科研小白完成签到,获得积分10
7秒前
7秒前
孤灯剑客完成签到,获得积分10
7秒前
CNS牛纸涛发布了新的文献求助50
8秒前
严yee发布了新的文献求助10
8秒前
高佳智发布了新的文献求助10
8秒前
iriyan发布了新的文献求助10
9秒前
善学以致用应助wangli采纳,获得10
11秒前
上官若男应助rainbow采纳,获得10
11秒前
深情安青应助LZH采纳,获得10
11秒前
11秒前
无花果应助liu采纳,获得10
12秒前
12秒前
自然鹭洋完成签到,获得积分10
12秒前
12秒前
Ava应助安蓝采纳,获得10
12秒前
帅气善斓发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
冷傲迎梦完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597618
求助须知:如何正确求助?哪些是违规求助? 4683110
关于积分的说明 14828504
捐赠科研通 4661108
什么是DOI,文献DOI怎么找? 2536751
邀请新用户注册赠送积分活动 1504315
关于科研通互助平台的介绍 1470215