亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Autonomous Fault Monitoring for Efficient Multi-Actuator Compressed Air Systems:Data Analytics of Demand-Oriented Parameters

计算机科学 执行机构 分析 实时计算 压缩传感 数据分析 故障检测与隔离 嵌入式系统 数据科学 数据挖掘 人工智能
作者
Massimo Borg,Paul Refalo,Emmanuel Francalanza
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:232: 783-793 被引量:4
标识
DOI:10.1016/j.procs.2024.01.078
摘要

Industry 4.0 has given rise to an increased use of system data and analytics. Autonomous fault detection in pneumatic systems has also been increasingly explored in the last decade, with one of the main objectives being to reduce the energy consumption and resulting carbon footprint of such systems. Nevertheless, pneumatic fault monitoring systems tend to mainly focus on the supply-side, neglecting the demand-side. Studies covering pneumatic fault monitoring on the demand-side, perform research on simple systems, typically investigating the effects on a single actuator or a very small system. This study aimed at tackling this issue, with tests performed on an industrial multi-actuator pick-and-place setup, logging data (i.e. cycle time, flow rate and system pressure) concurrently at two locations within the system. Furthermore, different sized leaks were introduced at three distinct locations, while monitoring their impacts on the system. It was found that with the use of the average, standard deviation and impulse factor of the cycle time and the other two parameters, it was possible to identify the presence of faults on a relatively large system. For instance, the retraction time for one of the actuators reduced by 26% as one of the faults was induced. With modern industrial setups already logging the cycle time and system pressure along the demand-side, this study shows that by using existing equipment, one can develop a reliable fault monitoring system. Such information makes it possible to determine additional fault characteristics, mainly the fault's severity, type and location, thus paving the way towards smart and energy efficient compressed air systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
4秒前
aa完成签到,获得积分10
12秒前
14秒前
aa发布了新的文献求助10
18秒前
风一样的风干肠完成签到 ,获得积分10
34秒前
msk完成签到 ,获得积分10
34秒前
科目三应助朱可欣采纳,获得30
1分钟前
爆米花应助科科研研up采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
朱可欣发布了新的文献求助30
2分钟前
科科研研up完成签到,获得积分10
2分钟前
2分钟前
3分钟前
Mark_He发布了新的文献求助10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
持卿应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
喜悦的惮完成签到,获得积分10
4分钟前
喜悦的惮发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
拼搏的帽子完成签到 ,获得积分10
5分钟前
Lucas应助zjq采纳,获得10
5分钟前
5分钟前
zjq发布了新的文献求助10
5分钟前
5分钟前
gexzygg应助zjq采纳,获得30
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
持卿应助科研通管家采纳,获得10
6分钟前
持卿应助科研通管家采纳,获得10
6分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543405
求助须知:如何正确求助?哪些是违规求助? 4629504
关于积分的说明 14611266
捐赠科研通 4570834
什么是DOI,文献DOI怎么找? 2505960
邀请新用户注册赠送积分活动 1483161
关于科研通互助平台的介绍 1454572