已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Validation of three new measure-correlate-predict models for the long-term prospection of the wind resource

威布尔分布 二元分析 比例(比率) 计算机科学 核密度估计 统计 风速 度量(数据仓库) 期限(时间) 数据挖掘 航程(航空) 数学 工程类 地理 气象学 物理 航空航天工程 量子力学 估计员 地图学
作者
Alejandro Romo Perea,Javier Amezcua,Oliver Probst
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:3 (2) 被引量:40
标识
DOI:10.1063/1.3574447
摘要

The estimation of the long-term wind resource at a prospective site based on a relatively short on-site measurement campaign is an indispensable task in the development of a commercial wind farm. The typical industry approach is based on the measure-correlate-predict (MCP) method where a relational model between the site wind velocity data and the data obtained from a suitable reference site is built from concurrent records. In a subsequent step, a long-term prediction for the prospective site is obtained from a combination of the relational model and the historic reference data. In the present paper, a systematic study is presented where three new MCP models, together with two published reference models (a simple linear regression and the variance ratio method), have been evaluated based on concurrent synthetic wind speed time series for two sites, simulating the prospective and the reference site. The synthetic method has the advantage of generating time series with the desired statistical properties, including Weibull scale and shape factors, required to evaluate the five methods under all plausible conditions. In this work, first a systematic discussion of the statistical fundamentals behind MCP methods is provided and three new models, one based on a nonlinear regression and two (termed kernel methods) derived from the use of conditional probability density functions, are proposed. All models are evaluated by using five metrics under a wide range of values of the correlation coefficient, the Weibull scale, and the Weibull shape factor. Only one of all models, a kernel method based on bivariate Weibull probability functions, is capable of accurately predicting all performance metrics studied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的青完成签到,获得积分10
1秒前
虚心的渊思完成签到 ,获得积分10
3秒前
3秒前
蒲公英完成签到 ,获得积分10
4秒前
舒心抽屉完成签到 ,获得积分10
5秒前
靓丽寄文完成签到 ,获得积分10
5秒前
夜晚不可以没有星星完成签到,获得积分10
6秒前
dopamine发布了新的文献求助10
6秒前
小鲤鱼完成签到 ,获得积分10
8秒前
9秒前
11秒前
dopamine完成签到,获得积分10
12秒前
土豪的摩托完成签到 ,获得积分10
12秒前
13秒前
suicone完成签到,获得积分10
13秒前
刻苦紫文完成签到 ,获得积分10
14秒前
lbyscu完成签到 ,获得积分10
17秒前
17秒前
19秒前
pinklay发布了新的文献求助10
20秒前
21秒前
少年完成签到,获得积分10
22秒前
不器君发布了新的文献求助10
23秒前
24秒前
TheSilencer完成签到 ,获得积分10
25秒前
一个发布了新的文献求助30
29秒前
233完成签到 ,获得积分10
32秒前
Vince完成签到 ,获得积分10
32秒前
小朵完成签到 ,获得积分10
32秒前
李爱国应助nini采纳,获得10
32秒前
小蘑菇应助平常心采纳,获得10
33秒前
111完成签到 ,获得积分10
38秒前
小王完成签到,获得积分10
38秒前
39秒前
tangzanwayne发布了新的文献求助30
39秒前
39秒前
在水一方应助Chao采纳,获得10
39秒前
FashionBoy应助Ming采纳,获得10
42秒前
爱生气的小龙完成签到 ,获得积分10
43秒前
眼睛大的寄容完成签到 ,获得积分10
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845379
求助须知:如何正确求助?哪些是违规求助? 3387609
关于积分的说明 10550197
捐赠科研通 3108359
什么是DOI,文献DOI怎么找? 1712543
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774808