High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics

曲线坐标 数学 有限元法 离散化 分段 间断伽辽金法 基函数 数学分析 应用数学 几何学 物理 热力学
作者
Veselin Dobrev,Tzanio V. Kolev,R. Rieben
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:34 (5): B606-B641 被引量:171
标识
DOI:10.1137/120864672
摘要

The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. In this paper, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. We discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered-grid hydrodynamics (SGH) approach and we show that under specific low-order assumptions, we exactly recover the classical SGH method. We present numerical results from an extensive series of verification tests that demonstrate several important practical advantages of using high-order finite elements in this context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助ChiLi采纳,获得10
1秒前
早睡一哥完成签到,获得积分10
1秒前
1秒前
天天快乐应助慧喆采纳,获得10
1秒前
a1313完成签到,获得积分10
3秒前
DI完成签到,获得积分10
3秒前
3秒前
川baba发布了新的文献求助30
3秒前
传奇3应助吃饭用大碗采纳,获得10
4秒前
无花果应助ATOM采纳,获得10
4秒前
RitaLee完成签到 ,获得积分10
6秒前
zho发布了新的文献求助10
6秒前
鸣鸣完成签到,获得积分10
6秒前
yyjy发布了新的文献求助10
6秒前
惊蛰发布了新的文献求助10
7秒前
7秒前
8秒前
真实的新瑶完成签到,获得积分10
8秒前
斯文败类应助牛阳雨采纳,获得10
9秒前
9秒前
小化化爱学习完成签到,获得积分10
10秒前
ChiLi完成签到,获得积分10
11秒前
12秒前
ew完成签到,获得积分10
12秒前
zho发布了新的文献求助10
12秒前
糟糕的学姐完成签到 ,获得积分10
13秒前
格格完成签到 ,获得积分10
13秒前
西屿清潺发布了新的文献求助20
13秒前
ChiLi发布了新的文献求助10
13秒前
柴胡完成签到,获得积分10
14秒前
可靠的lld完成签到 ,获得积分10
14秒前
英姑应助yyjy采纳,获得10
15秒前
隐形曼青应助高会和采纳,获得10
16秒前
啦啦咔嘞完成签到,获得积分10
16秒前
aaronpancn发布了新的文献求助30
17秒前
read完成签到,获得积分10
18秒前
yyjy完成签到,获得积分20
23秒前
24秒前
慕青应助科研通管家采纳,获得10
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825282
求助须知:如何正确求助?哪些是违规求助? 3367593
关于积分的说明 10446446
捐赠科研通 3086915
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816717
科研通“疑难数据库(出版商)”最低求助积分说明 769937