Topomer CoMFA and Virtual Screening Studies of Azaindole Class Renin Inhibitors

虚拟筛选 码头 对接(动物) 可预测性 化学 计算机科学 立体化学 计算生物学 组合化学 药物发现 数学 生物化学 生物 医学 统计 护理部
作者
Yuhong Xiang,Jia Song,Zhuoyong Zhang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:17 (5): 458-472 被引量:16
标识
DOI:10.2174/1386207317666140107094708
摘要

Direct renin inhibitors (DRIs) have increasingly shown a significant advantage in the treatment of hypertension and protection of target organs. In this paper, a series of azaindole class renin inhibitors were subjected to 3D-QSAR study using Topomer CoMFA. Five kinds of splitting mode for different fragment cutting and 6 different training and test sets grouping were attempted to build consensus models. The results indicated that 6 consensus models had similar predictability (q2 and r2 pred) and stability (r2). The best model showed good stability and predictability (q2 of 0.616, r2 of 0.908). The r2 pred value of the external test set was 0.70, which means that the model had an excellent external predictive ability, and the robustness of the developed model was assessed by the Y-randomization test. This study also adopted the methodology of fragment-based drug design (FBDD) to virtual screen new renin inhibitors by using Topomer Search technology. The R1-group of the compound No. 13 with the highest activity was chosen as the basic scaffold, and its remaining R2-group acted as a query to screen 142,025 molecules of ZINC database for similar fragments. The obtained 30 fragments with the highest R2-group contribution values were added to the basic scaffold respectively. Finally 30 new azaindole compounds with potent high activities were obtained. Further the binding modes were studied by using Surflex- Dock. The docking results showed good binding interactions of the designed compounds with the renin protein, thus the rationality of this design was further verified from the perspective of the renin receptor. Keywords: Fragment-based drug design, renin inhibitors, surflex-dock, topomer CoMFA, topomer search, virtual screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东郭凝蝶完成签到 ,获得积分10
1秒前
MOOTEA完成签到,获得积分20
2秒前
曾经的慕灵完成签到,获得积分10
7秒前
Ava应助nojego采纳,获得10
11秒前
是小小李哇完成签到 ,获得积分10
11秒前
蓝桉完成签到 ,获得积分10
13秒前
任性翠安完成签到 ,获得积分10
18秒前
念神珠恋玥完成签到,获得积分10
31秒前
千玺的小粉丝儿完成签到,获得积分10
32秒前
qiandi完成签到 ,获得积分10
33秒前
万能图书馆应助qyn1234566采纳,获得80
35秒前
花花2024完成签到 ,获得积分10
36秒前
39秒前
yee发布了新的文献求助10
44秒前
ilk666完成签到,获得积分10
47秒前
爆米花应助downdown采纳,获得10
49秒前
小蘑菇应助yee采纳,获得10
51秒前
西柚柠檬完成签到 ,获得积分10
54秒前
tlx完成签到,获得积分10
54秒前
ceploup完成签到,获得积分10
57秒前
个性松完成签到 ,获得积分10
1分钟前
迷路的问玉完成签到,获得积分20
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
swordshine完成签到,获得积分10
1分钟前
ll完成签到 ,获得积分10
1分钟前
慕青应助小吴同学采纳,获得10
1分钟前
nojego发布了新的文献求助10
1分钟前
1分钟前
小李完成签到 ,获得积分10
1分钟前
gao完成签到 ,获得积分10
1分钟前
风清扬完成签到,获得积分0
1分钟前
怕黑凤妖完成签到 ,获得积分10
1分钟前
俊逸的盛男完成签到 ,获得积分10
1分钟前
乐观海云完成签到 ,获得积分10
2分钟前
32429606完成签到 ,获得积分10
2分钟前
tangchao完成签到,获得积分10
2分钟前
又又完成签到,获得积分10
2分钟前
笨笨忘幽完成签到,获得积分10
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043535
求助须知:如何正确求助?哪些是违规求助? 3581248
关于积分的说明 11383837
捐赠科研通 3308656
什么是DOI,文献DOI怎么找? 1821127
邀请新用户注册赠送积分活动 893553
科研通“疑难数据库(出版商)”最低求助积分说明 815751