Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

纤维束成像 磁共振弥散成像 神经影像学 人工智能 计算机科学 模式识别(心理学) 认知 神经科学 心理学 磁共振成像 医学 放射科
作者
Liang Zhan,Jiayu Zhou,Yalin Wang,Yan Jin,Neda Jahanshad,Gautam Prasad,Talia M. Nir,Cassandra D. Leonardo,Jieping Ye,Paul M. Thompson,for the Alzheimer’s Disease Neuroimaging Initiative
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media]
卷期号:7 被引量:139
标识
DOI:10.3389/fnagi.2015.00048
摘要

Alzheimer's disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods - four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one "ball-and-stick" approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JusT发布了新的文献求助10
刚刚
阿美替尼发布了新的文献求助30
刚刚
刚刚
汉堡包应助Zpk采纳,获得10
刚刚
1秒前
1秒前
酿雪未成完成签到,获得积分10
1秒前
SciGPT应助氧硫硒锑铋采纳,获得10
2秒前
2秒前
兔子完成签到,获得积分10
2秒前
LYSM发布了新的文献求助10
2秒前
华仔应助王某人采纳,获得10
2秒前
Emilia完成签到,获得积分10
3秒前
天热发布了新的文献求助10
3秒前
3秒前
3秒前
GRJ发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
zoe完成签到 ,获得积分10
4秒前
4秒前
希望天下0贩的0应助Dandy采纳,获得10
4秒前
菘蓝应助雷含灵采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
玛卡巴卡发布了新的文献求助10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得30
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
传奇3应助宝宝采纳,获得10
5秒前
灯座发布了新的文献求助10
6秒前
ding应助科研通管家采纳,获得10
6秒前
研究生end应助科研通管家采纳,获得200
6秒前
6秒前
CC2333完成签到,获得积分10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182